264 research outputs found

    miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity

    Get PDF
    miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNΞ² induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity

    The loop structure and the RNA helicase p72/DDX17 influence the processing efficiency of the mice miR-132

    Get PDF
    miRNAs are small RNAs that are key regulators of gene expression in eukaryotic organisms. The processing of miRNAs is regulated by structural characteristics of the RNA and is also tightly controlled by auxiliary protein factors. Among them, RNA binding proteins play crucial roles to facilitate or inhibit miRNA maturation and can be controlled in a cell, tissue and species-specific manners or in response to environmental stimuli. In this study we dissect the molecular mechanism that promotes the overexpression of miR-132 in mice over its related, co-transcribed and co-regulated miRNA, miR-212. We have shown that the loop structure of miR-132 is a key determinant for its efficient processing in cells. We have also identified a range of RNA binding proteins that recognize the loop of miR-132 and influence both miR-132 and miR-212 processing. The DEAD box helicase p72/DDX17 was identified as a factor that facilitates the specific processing of miR-132

    The neodymium isotope fingerprint of AdΓ©lie coast bottom water

    Get PDF
    AdΓ©lie Land Bottom Water (ALBW), a variety of Antarctic Bottom Water formed off the AdΓ©lie Land coast of East Antarctica, ventilates the abyssal layers of the Australian sector of the Southern Ocean as well as the eastern Indian and Pacific Oceans. We present the first dissolved neodymium (Nd) isotope and concentration measurements for ALBW. The summertime signature of ALBW is characterized by Ξ΅Nd = βˆ’8.9, distinct from Ross Sea Bottom Water, and similar to Weddell Sea Bottom Water. AdΓ©lie Land Shelf Water, the precursor water mass for wintertime ALBW, features the least radiogenic Nd fingerprint observed around Antarctica to date (Ξ΅Nd = βˆ’9.9). Local geology around Antarctica is important in setting the chemical signature of individual varieties of Antarctic Bottom Water, evident from the shelf water signature, which should be considered in the absence of direct wintertime observations

    EBMT prospective observational study on allogeneic hematopoietic stem cell transplantation in T-prolymphocytic leukemia (T-PLL)

    Get PDF
    Preliminary data suggest that allogeneic stem cell transplantation (allo-SCT) may be effective in T-prolymphocytic leukemia (T-PLL). The purpose of the present observational study was to assess the outcome of allo-SCT in patients aged 65 years or younger with a centrally confirmed diagnosis of T-PLL. Patients were consecutively registered with the EBMT at the time of transplantation and followed by routine EBMT monitoring but with an extended dataset. Between 2007 and 2012, 37 evaluable patients (median age 56 years) were accrued. Pre-treatment contained alemtuzumab in 95% of patients. Sixty-two percent were in complete remission (CR) at the time of allo-SCT. Conditioning contained total body irradiation with 6 Gy or more (TBI6) in 30% of patients. With a median follow-up of 50 months, the 4-year non-relapse mortality, relapse incidence, progression-free (PFS) and overall survival were 32, 38, 30 and 42%, respectively. By univariate analysis, TBI6 in the conditioning was the only significant predictor for a low relapse risk, and an interval between diagnosis and allo-SCT of more than 12 months was associated with a lower NRM. This study confirms for the first time prospectively that allo-SCT can provide long-term disease control in a sizable albeit limited proportion of patients with T-PLL.Peer reviewe

    Functional cyclophilin D moderates platelet adhesion, but enhances the lytic resistance of fibrin

    Get PDF
    In the course of thrombosis, platelets are exposed to a variety of activating stimuli classified as β€˜strong’ (e.g. thrombin and collagen) or β€˜mild’ (e.g. ADP). In response, activated platelets adhere to injured vasculature, aggregate, and stabilise the three-dimensional fibrin scaffold of the expanding thrombus. Since β€˜strong’ stimuli also induce opening of the mitochondrial permeability transition pore (MPTP) in platelets, the MPTP-enhancer Cyclophilin D (CypD) has been suggested as a critical pharmacological target to influence thrombosis. However, it is poorly understood what role CypD plays in the platelet response to β€˜mild’ stimuli which act independently of MPTP. Furthermore, it is unknown how CypD influences platelet-driven clot stabilisation against enzymatic breakdown (fibrinolysis). Here we show that treatment of human platelets with Cyclosporine A (a cyclophilin-inhibitor) boosts ADP-induced adhesion and aggregation, while genetic ablation of CypD in murine platelets enhances adhesion but not aggregation. We also report that platelets lacking CypD preserve their integrity in a fibrin environment, and lose their ability to render clots resistant against fibrinolysis. Our results indicate that CypD has opposing haemostatic roles depending on the stimulus and stage of platelet activation, warranting a careful design of any antithrombotic strategy targeting CypD

    Simplified Method to Predict Mutual Interactions of Human Transcription Factors Based on Their Primary Structure

    Get PDF
    Background: Physical interactions between transcription factors (TFs) are necessary for forming regulatory protein complexes and thus play a crucial role in gene regulation. Currently, knowledge about the mechanisms of these TF interactions is incomplete and the number of known TF interactions is limited. Computational prediction of such interactions can help identify potential new TF interactions as well as contribute to better understanding the complex machinery involved in gene regulation. Methodology: We propose here such a method for the prediction of TF interactions. The method uses only the primary sequence information of the interacting TFs, resulting in a much greater simplicity of the prediction algorithm. Through an advanced feature selection process, we determined a subset of 97 model features that constitute the optimized model in the subset we considered. The model, based on quadratic discriminant analysis, achieves a prediction accuracy of 85.39 % on a blind set of interactions. This result is achieved despite the selection for the negative data set of only those TF from the same type of proteins, i.e. TFs that function in the same cellular compartment (nucleus) and in the same type of molecular process (transcription initiation). Such selection poses significant challenges for developing models with high specificity, but at the same time better reflects real-world problems. Conclusions: The performance of our predictor compares well to those of much more complex approaches for predicting TF and general protein-protein interactions, particularly when taking the reduced complexity of model utilisation into account

    CARM1 Mediates Modulation of Sox2

    Get PDF
    Sox2 is a key component of the transcription factor network that maintains the pluripotent state of embryonic stem cells (ESCs). Sox2 is regulated by multiple post-translational modifications, including ubiquitination, sumoylation, acetylation and phosphorylation. Here we report that Sox2 is in association with and methylated by coactivator-associated arginine methyltransferase 1 (CARM1), a protein arginine methyltransferase that plays a pivotal role in ESCs. We found that CARM1 facilitates Sox2-mediated transactivation and directly methylates Sox2 at arginine 113. This methylation event enhances Sox2 self-association. Furthermore, the physiological retention of Sox2 on chromatin restricts the Sox2 methylation level. Our study reveals the direct regulation of Sox2 by CARM1 that sheds lights on how arginine methylation signals are integrated into the pluripotent transcription factor network

    Large-Scale Discovery and Characterization of Protein Regulatory Motifs in Eukaryotes

    Get PDF
    The increasing ability to generate large-scale, quantitative proteomic data has brought with it the challenge of analyzing such data to discover the sequence elements that underlie systems-level protein behavior. Here we show that short, linear protein motifs can be efficiently recovered from proteome-scale datasets such as sub-cellular localization, molecular function, half-life, and protein abundance data using an information theoretic approach. Using this approach, we have identified many known protein motifs, such as phosphorylation sites and localization signals, and discovered a large number of candidate elements. We estimate that ∼80% of these are novel predictions in that they do not match a known motif in both sequence and biological context, suggesting that post-translational regulation of protein behavior is still largely unexplored. These predicted motifs, many of which display preferential association with specific biological pathways and non-random positioning in the linear protein sequence, provide focused hypotheses for experimental validation
    • …
    corecore