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Atopic dermatitis and inflammatory skin disease
EMSY expression affects multiple components
of the skin barrier with relevance to atopic
dermatitis
Martina S. Elias, PhD,a Sheila C. Wright, HNC,a Judit Remenyi, PhD,a James C. Abbott, PhD,b Susan E. Bray, PhD,c

Christian Cole, PhD,b Sharon Edwards, MBChB,d Marek Gierlinski, PhD,b Mateusz Glok,a John A. McGrath, FRCP,e

William V. Nicholson, PhD,a Lavinia Paternoster, PhD,f Alan R. Prescott, PhD,g Sara Ten Have, PhD,h

Phillip D. Whitfield, PhD,i Angus I. Lamond, PhD,h and Sara J. Brown, FRCPEa,j Dundee, Inverness, London, and Bristol,

United Kingdom
GRAPHICAL ABSTRACT
Background: Atopic dermatitis (AD) is a common, complex,
and highly heritable inflammatory skin disease. Genome-wide
association studies offer opportunities to identify molecular
targets for drug development. A risk locus on chromosome
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11q13.5 lies between 2 candidate genes, EMSY and
LRRC32 (leucine-rich repeat-containing 32) but the
functional mechanisms affecting risk of AD remain
unclear.
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Abbreviations used

AD: Atopic dermatitis

DMEM: Dulbecco modified Eagle medium

EGF: Epidermal growth factor

FLG: Gene encoding filaggrin

GO: Gene ontology

GWAS: Genome-wide association study

Hi-C: Genome-wide chromosome conformation capture and high-

throughput sequencing to identify regions of DNA showing

interaction in 3-dimensional space

LRRC32: Leucine-rich repeat-containing 32 gene, encoding the

glycoprotein A repetitions predominant (GARP) protein

NHK: Normal human keratinocytes

NDF: Normal dermal fibroblasts

qPCR: Quantitative PCR

siRNA: Small interfering RNA

SNP: Single nucleotide polymorphism

TEWL: Transepidermal water loss
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Objectives: We sought to apply a combination of genomic and
molecular analytic techniques to investigate which genes are
responsible for genetic risk at this locus and to define
mechanisms contributing to atopic skin disease.
Methods: We used interrogation of available genomic and
chromosome conformation data in keratinocytes, small
interfering RNA (siRNA)–mediated knockdown in skin
organotypic culture and functional assessment of barrier
parameters, mass spectrometric global proteomic analysis and
quantitative lipid analysis, electron microscopy of organotypic
skin, and immunohistochemistry of human skin samples.
Results: Genomic data indicate active promoters in the genome-
wide association study locus and upstream of EMSY; EMSY,
LRRC32, and intergenic variants all appear to be within a single
topologically associating domain. siRNA-knockdown of EMSY in
organotypic culture leads to enhanced development of barrier
function, reflecting increased expression of structural and
functional proteins, including filaggrin and filaggrin-2, as well as
long-chain ceramides. Conversely, overexpression of EMSY in
keratinocytes leads to a reduction in markers of barrier
formation. Skin biopsy samples from patients with AD show
greater EMSY staining in the nucleus, which is consistent with an
increased functional effect of this transcriptional control protein.
Conclusion: Our findings demonstrate an important role for
EMSY in transcriptional regulation and skin barrier formation,
supporting EMSY inhibition as a therapeutic approach. (J
Allergy Clin Immunol 2019;144:470-81.)

Key words: Atopic dermatitis, atopic eczema, EMSY, filaggrin, ge-
netics, genomics, organotypic, lipidomics, proteomics, siRNA
knockdown

Atopic dermatitis (AD; or eczema1) is a common inflammatory
skin disease with strong heritability.2 Genome-wide association
studies (GWASs) have identified multiple loci affecting AD
risk,3 including effects on the skin barrier and immune func-
tion,2,4 and it has been demonstrated in other complex traits
that molecular mechanisms defined by GWAS loci might repre-
sent effective therapeutic targets.5

The most widely replicated genetic risk for AD lies within the
epidermal differentiation complex on chromosome 1q21.33,6,7;
this includes FLG, which encodes the skin barrier protein filag-
grin.8 Expression levels of filaggrin and its metabolites in the
outer epidermis correlate with AD activity.9,10 However, this
mechanism has not been successfully targeted in therapy develop-
ment since its discovery more than 10 years ago.

An association peak within an intergenic region on chromo-
some 11q13.5 was identified in the earliest AD GWAS.6 This
locus has been replicated in subsequent GWASs11-13 and meta-
GWASs.3,7 In addition to AD, the region is associated with mul-
tiple atopic phenotypes14,15 and other disorders characterized by
epithelial barrier dysfunction, including polyallergen sensitiza-
tion,14,16 asthma,17 allergic rhinitis,18 food allergy,19,20 eosinophil
counts,21 eosinophilic esophagitis,22 inflammatory bowel dis-
ease,23 and the gut microbiome.24 The AD-associated single
nucleotide polymorphisms (SNPs) are in an intergenic region be-
tween LRRC32 (leucine-rich repeat-containing 32), and EMSY.

LRRC32 encodes the TGF-b activator LRRC32 (UniProtKB
Q14392), previously termed glycoprotein A repititions predomi-
nant (GARP), a membrane protein that binds latent TGF-b1 on
the surfaces of activated regulatory T cells.25 LRRC32 has been
proposed as a causal gene for atopic skin inflammation,26 but
the credible SNPs identified by GWASs at this locus are all inter-
genic,3 suggesting that regulatory rather than coding variants
drive the association.

EMSY, also known as BRCA2-interacting transcriptional
repressor and previously termed C11orf30, codes for the protein
EMSY (UniProtKB Q7Z589), which is expressed in multiple hu-
man tissues, including cerebellum, breast, lung, ovary, uterus, and
skin (GTEx RNA-seq, V7). EMSY has been characterized as a
transcriptional regulator, either repressing transcription as part
of a chromatin remodeling complex or activating transcription
as part of a histone H3–specific methyltransferase complex.27

EMSY amplification is associated with DNA damage and
increased risk of malignancy in breast and ovarian tissue.27

EMSY can also play a role in inflammation because the protein
kinase AKT1 regulates the interferon response through phosphor-
ylation of EMSY,28 but its role in skin remains undefined.

We set out to investigate, using genetic and genomic data,
whether EMSY, LRRC32, or both, showed evidence of activity in
human skin cells. We then investigated the mechanism of effect
using functional and multi-omics analysis of organotypic skin,
followed by immunostaining of AD biopsy samples.
METHODS

Human tissues and cells
All human tissues were obtained with written informed consent from

donors under the governance of and with ethical approval from the NHS

Research Scotland Biorepository in Tayside. Primary keratinocytes and

donor-matched primary fibroblasts were extracted from skin samples

discarded from plastic surgery procedures. AD skin samples were identified

from the hospital pathology database as consecutive unselected cases.

Demographic details are provided in the Methods section in this article’s On-

line Repository at www.jacionline.org.
Cell and skin organotypic cultures
Normal human keratinocytes (NHKs) and normal dermal fibroblasts

(NDFs) were isolated from healthy breast skin by means of sequential

collagenase D and trypsin EDTA digestion, as previously described.29 NHKs

http://www.jacionline.org
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were cocultured in RM medium (3:1 Dulbecco modified Eagle medium

[DMEM]/Hams F12, 10% FCS, 0.4 mg/mL hydrocortisone, 5 mg/mL insulin,

10 ng/mL epidermal growth factor [EGF], 5 mg/mL transferrin, 8.4 ng/mL

cholera toxin, and 13 ng/mL liothyronine; Sigma-Aldrich, Gillingham,

Dorset, United Kingdom) along with mitomycin C–inactivated 3T3 feeder

cells.30 EGF was omitted for the first day of culture. NDFs were cultured in

DMEM supplemented with 10% FCS under standard conditions.

Fibrin gel dermal equivalents were prepared by using a protocol adapted

from published methods.31-33 A volume of 0.5 mL fibrinogen (35 mg/mL in

NaCl; Sigma-Aldrich) and 0.5 mL of thrombin (3 U/mL in 2 mmol/L CaCl2/

1.1% NaCl; Sigma-Aldrich) were combined on ice, supplemented with

200,000 NDFs and aprotinin (0.1 U/mL; Sigma-Aldrich), and transferred

to a 12-well plate. After 30 minutes of incubation at 378C, the gels were

covered in medium (DMEM, 10% FCS, and 0.1 U/mL aprotinin) and

cultured overnight (day 1). The following day, medium was replaced with

RM medium excluding EGF, 0.1 U/mL aprotinin, and 2 3 106 suspended

NHKs (day 2). This was refreshed daily for the next 2 days (day 3 and 4)

with RM medium containing 0.1 ng/mL EGF and 0.1 U/mL aprotinin. On

day 5, gels were carefully removed from wells by using a plastic spatula

and lifted onto custom-made steel grids lined with nylon gauze (Millipore,

Livingston, United Kingdom). RM medium supplemented with 0.1 ng/mL

EGF and 0.1 U/mL aprotinin was added up to the base of the grid, enabling

the fibrin gels to be nourished from below and the epidermis cultured at the

air-liquid interface. Medium was refreshed every other day until day 12

when the cultures were analyzed. Where required, the epidermis was iso-

lated from fibrin gel after hypertonic saline–induced split (4 hours, 1 mol/

L NaCl, 48C).
Small interfering RNA–mediated knockdown
NHKs were reverse transfected immediately before inclusion in the

organotypic cultures by using RNAiMax transfection reagent (Life Technol-

ogies, Carlsbad, Calif), according to the manufacturer’s instructions. Briefly,

small interfering RNA (siRNA) complexes were formed in Opti-MEM

medium (20mmol/L siRNA and 5mL of RNAiMAX) and, after 20 minutes of

incubation, combined with 2 3 106 suspended NHKs and transferred to the

preprepared dermal substrate. A pool of 4 siRNA duplexes was used

(EMSY: LQ-004081-00-0002, FLG: LQ-021718-00-0002, control:

ON-TARGETplus nontargeting siRNA #4 D.001810-04-20; Dharmacon, La-

fayette, Colo).
EMSY overexpression in primary keratinocytes
A second-generation lentiviral system was used, as follows. Pseudoviral

particles were prepared with psPAX2 packaging (catalog no. 12260;

AddGene, Watertown, Mass) and pMD2.G plasmid (catalog no. 12259;

AddGene), which were cotransfected with the control pLenti-C-mGFP-P2A-

puromycin–tagged cloning vector (catalog no. PS100093; OriGene, Rock-

ville, Md) plasmid or with the Lenti-ORF clone of mGFP-tagged-human

chromosome 11 open reading frame 30 (C11orf30; catalog no. RC216916L4;

OriGene) plasmid with Lipofectamine-3000 transfection reagent (catalog no.

L3000008; Invitrogen, Carlsbad, Calif), according to the manufacturer’s pro-

tocol, into 293T packaging cells for 16 hours. The nextmorning, the cells were

washed twice with PBS to remove excess plasmid DNA, and the medium was

replaced with virus-producing medium (20% FBS/DMEM). Forty-eight, 72,

and 96 hours after transfection, the first, second, and third viral supernatants

were harvested. Viral supernatants were spun down at 1200 rpm for 15minutes

and filtered with a 0.45-mm filter.

Primary human keratinocytes from donor skin were transduced twice.

The first transduction was in RMmedium without EGF. After treatment, the

keratinocytes with trypsin and 13 106 cells/well were mixed with 10mg/mL

Polybrene (hexadimethrine bromide; catalog no. H9268; Sigma-Aldrich)

and 1 or 2 mL of viral supernatant and then plated onto 6-well plates and

cultured overnight. The second transduction was performed in monolayer

culture using RM medium without EGF, 10 mg/mL Polybrene, and 1 or

2 mL of viral supernatant. Cells were incubated for 90 minutes at 378C, fol-
lowed by centrifugation at 1200 rpm. To eliminate excess virus, cells were
washed twice with PBS, and the medium was replaced with RM media

(3:1 DMEM/Hams F12, 10% FCS, 0.4 mg/mL hydrocortisone, 5 mg/mL in-

sulin, 10 ng/mL EGF, 5 mg/mL transferrin, 8.4 ng/mL cholera toxin, and

13 ng/mL liothyronine). Fresh RM medium was replaced every second

day, and samples were harvested on day 10 after transduction as a differen-

tiated culture.
Fluorescent dye penetration
Fifty microliters of 1 mmol/L Lucifer yellow dye (Sigma-Aldrich) was

added to the epidermal surface of the organotypic culture and incubated at

378C for 4 hours. Metal cloning rings were used to control uniform dosing on

the epidermal surface. Lucifer yellow was removed, and the organotypic

cultures were washed in PBS before formalin-fixed paraffin embedding under

standard conditions. Four-micrometer sections were deparaffinized, counter-

stained with 49-6-diamidino-2-phenylindole dihydrochloride (1 mg/mL for

10 minutes; Life Technologies, Carlsbad, Calif), and imaged with a confocal

Zeiss LSM710 microscope (Zeiss, Oberkochen, Germany). Quantification of

dye penetration in the upper dermis (average intensity in the upper 40mm)was

performed with Zeiss Zen software and compared by using paired t tests.
Transepidermal water loss
Organotypic cultures were equilibrated at room temperature and atmo-

spheric conditions for 30 minutes before transepidermal water loss (TEWL)

was measured at 2 locations on the epidermal surface with an AquaFlux

AF200 instrument (Biox Systems, London, United Kingdom) with a custom

(5 mm in diameter) probe head. TEWL measurements were taken every

second for a minimum of 60 seconds until a stable reading, as determined by

using the software, was obtained.
Capacitance
Organotypic cultures were equilibrated at room temperature and atmo-

spheric conditions for 30 minutes before measurement of epidermal surface

capacitance as a measure of water content with a Corneometer (Courage and

Khazaka, Cologne, Germany). Three measurements were recorded from each

organotypic culture, and the mean was calculated.
Protein data analysis
Network analysis was performed by using Ingenuity Pathway Analysis

(Qiagen Ingenuity, version 01-12; Qiagen, Hilden, Germany). Gene ontology

(GO) enrichment analysis was performed in the Gene Ontology Consortium

online tool by using PANTHER classification http://www.geneontology.org/

page/go-enrichment-analysis (accessed August 28, 2018). A volcano plot

was generated in R/ggplot2 by using human proteins detected in all 4 of the

replicates to calculate the fold change (nontargeting control/EMSY knock-

down) for each donor with log10 transformation and a t test for significance.
Lipid staining
Frozen sections of skin organotypic samples were cut and air-dried onto

slides before formalin fixation and rinsing with 60% isopropranol. Oil Red O

(Sigma-Aldrich) working solution was freshly prepared, and sections were

stained for 15 minutes, rinsed with 60% isopropanol, and then lightly

counterstained with alum hematoxylin before a final rinse with distilled water.

Additional Methods are described in this article’s Online Repository at

www.jacionline.org.
RESULTS

Genomic data support EMSY and LRRC32 as

candidate genes in skin
The AD-associated SNPs at the chromosome 11q13.5 locus are

approximately 27 kb downstream of EMSY (Human Genome

http://www.geneontology.org/page/go-enrichment-analysis
http://www.geneontology.org/page/go-enrichment-analysis
http://www.jacionline.org


FIG 1. Regulatory features of the AD risk locus and adjacent genes on chromosome 11q13.5. Genes (blue)

flanking the locus with multiple disease-associated SNPs (green) were identified by using a GWAS. EMSY

has a protein-coding region spanning 106 kb, with 20 exons producing 18 splice variants. LRRC32 spans 13

kb, including 3 exons. The location of the credible set of AD-associated SNPs3 is marked. H3K27ac marks

(pink) and DNase I hypersensitivity data (gray) are from the Encyclopedia of DNA Elements (ENCODE; ac-

cessed June 2018). Regulatory features in the same region of chromosome 11 are from Ensembl

(GRCh38.12, accessed April 2019).
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Nomenclature Committee: 18071, ENSG00000158636) and
approximately 77 kb downstream of LRRC32 (Human Genome
Nomenclature Committee: 137207, ENSG00000137507). The
credible set identified by mapping this locus lies entirely within
an intergenic region (Fig 1). Encyclopedia of DNA Elements
(ENCODE) and Ensembl data predict multiple regulatory fea-
tures within the region of disease risk SNPs, and there are putative
promoters upstream of each gene (Fig 1). Focusing on skin, there
are histone H3K27ac marks indicating active enhancers or pro-
moters in NHKs in the AD risk locus and at the 39 end of
EMSY but not LRRC32 (Fig 1).

Enhancer-promoter interactions can occur by proximity in
3-dimensional space34 and show cell lineage specificity35;
therefore we reanalyzed 2 sets of genome-wide chromosome
conformation capture and high-throughput sequencing (Hi-C)
data from NHKs, to identify regions of DNA showing
interaction in 3-dimensional space. Interrogation of Hi-C
data36 shows that the intergenic SNPs, as well as EMSY and
LRRC32 all lie within a single topologically associated domain
in keratinocytes (see Fig E1 in this article’s Online Repository
at www.jacionline.org), supporting a possible functional
interaction. Analysis of promoter-capture Hi-C37 in
differentiating keratinocytes showed evidence of interaction
between the promoter region of LRRC32 and the intergenic
SNP locus, but these data were not sufficiently detailed to
determine whether EMSY also shows conformational
interaction (see Fig E1).

Gene expression data38 and our own single-molecule
RNA-sequencing analysis39 confirm expression of each gene in
the skin, but there is no significant difference in EMSY or
LRRC32 mRNA abundance in atopic skin compared with
nonatopic control skin (P >.05, see Fig E2 in this article’s Online
Repository at www.jacionline.org). However, EMSY is more
highly expressed in skin than LRRC32 at the protein level
(https://www.proteinatlas.org/), and it has not previously been
studied in keratinocyte biology; therefore EMSY was selected
for further detailed investigation.
EMSY knockdown in a skin organotypic model

enhances barrier function
To investigate a functional effect of EMSY in skin, we used

primary human keratinocytes seeded onto a dermal equivalent,
which forms an organotypic model with stratified layers that
effectively recapitulate the structure and gene expression
patterns of human skin.40 The model also demonstrates
functional parameters controlling the entry and exit of small
molecules, and this can be used to quantify effects on barrier
formation and function.41 siRNA knockdown of EMSY
expression was achieved by means of transfection of
keratinocytes immediately before seeding onto the dermal
equivalent. Knockdown was confirmed at the mRNA and
protein levels, persisting to 10 days in organotypic culture
(Fig 2, A-C). Equivalent effects were seen by using individual
and pooled siRNAs (see Fig E3 in this article’s Online
Repository at www.jacionline.org). EMSY knockdown
produced a marked phenotypic change (Fig 2, D), including
thickening of the epidermal cell layer and stratum corneum
(Fig 2, E). There was an increase in the number of layers
within the stratum corneum and the frequency of
corneodesmosomes (Fig 2, F). The stratum granulosum, the
site of filaggrin expression,8 was also more prominent
(Fig 2, D), and increased filaggrin expression was confirmed
by using quantitative PCR (qPCR; n 5 7 replicates,
mean 6 SEM fold change 5 2.00 6 0.41 compared with
the nontargeting control) and Western blotting (n 5 7,
mean fold change 5 1.97 6 0.22; Fig 2, G).

In our skin culture model stratum corneum hydration, TEWL,
and Lucifer yellow dye penetration progressively decrease as the
skin barrier is formed (see Fig E4 in this article’s Online Repos-
itory at www.jacionline.org).EMSY knockdown in the skin model
resulted in a reduction in stratum corneum hydration (Fig 3, A), a
reduction in TEWL (Fig 3, B), and a reduction in penetration of
the Lucifer yellow dye (Fig 3, C and D), which is in keeping
with enhanced and accelerated barrier development compared
with control siRNA treatment.

http://www.jacionline.org
http://www.jacionline.org
https://www.proteinatlas.org/
http://www.jacionline.org
http://www.jacionline.org


A

G

Pro-
filaggrin

Filaggrin

GAPDH

siRNA m
oc

k

FL
G

EM
SY

N
T

EMSY

B

EMSY

GAPDH

M
oc

k

EM
SY

-s
iR

N
A

N
T-

siR
N

A

-198

-98

-38

D

N
T-

siR
N

A
EM

SY
-s

iR
N

A

Donor  1 Donor  2

EM
SY

/E
F1

A
 m

RN
A

Mock EMSY-
siRNA

NT-
siRNA

1.5

1.0

0.5

0.0

***

1.5

1.0

0.5

0.0

C

EM
SY

/G
AP

DH
 d

en
sit

om
et

ry

Mock EMSY-
siRNA

NT-
siRNA

**

E

***

Viable cell 
layers

EMSY-
siRNA

NT-
siRNA

2.0

1.5

1.0

0.5

0.0
Re

la
ve

 th
ic

kn
es

s

Stratum 
corneum

EMSY-
siRNA

NT-
siRNA

4.0

3.0

2.0

1.0

0.0

***

F

SC

N
T-

siR
N

A
EM

SY
-s

iR
N

A

SC

FIG 2. Biochemical and histologic effects of EMSY knockdown in a skin organotypic model in vitro. A, qPCR

showing knockdown of EMSY mRNA after 10 days in culture (7 days after lifting to the air-liquid interface)

normalized to a nontargeting control–treated sample (n 5 7, mean 36% reduction compared with the non-

targeting control). B and C,Western blot showing knockdown of EMSY protein after 10 days in culture (Fig 2,

B) and densitometry to quantify protein knockdown normalized to a nontargeting control (Fig 2, C; n5 7).D,

Appearance of organotypic cultures showing an increased granular layer and thickened stratum corneum in

response to EMSY siRNA knockdown; representative images were replicated in 10 independent donor ex-

periments. Scale bar 5 25 mm. E, Relative thickness of epidermal layers (n 5 10). F, Transmission electron

microscopy of stratum corneum showing thickness of the stratum corneum (white arrows)with an increase

in the number of layers and number of corneodesmosomes (black arrowheads). G, Western blot showing

filaggrin expression in skin organotypic cultures untreated (mock) and treated with nontargeting siRNA,

FLG siRNA, and EMSY siRNA 7 days after lifting to the air-liquid interface. **P < .001 and ***P < .0001,

paired t test. GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; NT, nontargeting control siRNA. Bars

show means and SEMs.
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concomitant reduction in expression of differentiation markers (n 5 5).
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FIG 4. Functional effects of EMSY knockdown in a skin organotypic model. Overexpression of EMSY in pri-

mary human keratinocytes (A) and concomitant reduction in expression of differentiation markers at the

mRNA (B) and protein (C and D) levels (n 5 3). Quantification of protein blots by using densitometry is

shown in Fig E5. GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; GFP, green fluorescent protein.

FIG 5. Proteomic analysis of EMSY knockdown in a skin organotypic model. A, Volcano plot showing mean

fold change in 4 biological replicate samples comparing the nontargeting (NT) control siRNA–treatedmodel

with EMSY siRNA knockdown. t Test results are color coded red (P < .05), orange (fold change <_ 2.5 or >_ 0.5),

or green (P < .05 and fold change >_ 2.5 or <_ 0.5). B, Ingenuity Pathway Analysis (Qiagen) of proteins consis-

tently upregulated or downregulated (0.5 >_ fold change >_ 2.5) in 3 ormore of 4 biological replicates, showing

proteins defective in monogenic skin diseases with similarities to AD, including ichthyoses,42-45 hyperker-

atosis,46 or skin fragility47,48 (red asterisks) and an enhancement of pathways predicted to inhibit the devel-

opment of dermatitis, hyperkeratosis, and hair disorders (blue cogwheels).
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EMSY overexpression reduces filaggrin expression
In contrast to the phenotype observed with EMSY knockdown,

overexpression of EMSY in primary human keratinocytes
resulted in a reduction in multiple markers of differentiation
and barrier formation at the mRNA and protein levels
(Fig 4 and see Fig E5 in this article’s Online Repository at
www.jacionline.org).
Proteomic analysis reveals pathways inhibiting the

development of dermatitis
To assess in more detail the EMSY knockdown phenotype, we

applied tandem mass spectrometric global proteomic analysis
(MS/MS) to donor-matched control and EMSY knockdown
organotypic experiments from 4 independent donors. Total
epidermal protein extracts were fractionated by using high-pH

http://www.jacionline.org
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FIG 6. Lipid and ultrastructural analyses of EMSY knockdown in the skin organotypic model. A, Lipid stain-

ing of skin organotypic samples treated with nontargeting (NT) siRNA control and EMSY siRNA and Oil Red

O stain neutral lipids B, Mass spectrometric lipid analysis showing a greater abundance of ceramides with

longer chain length in EMSY siRNA–treated organotypic skin compared with a nontargeting siRNA control.

The x-axis shows nonhydroxy fatty acid carbon chain length (n 5 5 biological replicate samples). Lines

show the best fit of the linear model and 95% CIs (shaded areas). P values are for the term in the linear model

for lipid chain length. C, Transmission electron microscopy: osmium tetroxide postfixed and stained,

showing increased size of desmosomal structures (arrows) in the EMSY knockdown skin model. Scale

bar 5 1 mm.
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reversed-phase chromatography before tandem mass spectrom-
etry, which identified more than 9000 proteins per sample (see
Fig E6 in this article’s Online Repository at www.jacionline.
org). qPCR and Western blotting confirmed knockdown of
EMSY in each sample. A greater proportion of proteins showed
increased rather than decreased expression on EMSY knockdown
(Fig 5, A), indicating that EMSY’s predominant role is as a tran-
scriptional repressor in this tissue.

Data were filtered for proteins showing changes in the same
direction consistently across all 4 biological replicates and fold
changes of 2.5 or greater (n5 154 proteins) or 0.5 or less (n5 130
proteins) in at least 3 of 4 of the biological replicates. Consistent
direction of change was used as a criterion to focus analysis on
changes of relevance toEMSY knockdown and showing reproduc-
ibility across different donors to minimize any effect of interindi-
vidual differences.

GO analysis of the upregulated proteins showed enrichment for
the biological processes termed establishment of the skin barrier
(GO: 0061436), skin development (GO: 0043588), regulation of
water loss through the skin (GO: 0033561), and cornification
(GO: 0070268; each false discovery rate: P <_ .037). GO analysis
of the downregulated proteins showed enrichment of cellular
components termed cytosol (GO: 0005829), the mitochondrial
membrane (GO: 0031966), and the Golgi membrane (GO:
0000139; each false discovery rate: P <_ .010). The full lists of
GO terms defined by using this analysis are shown in Fig E7 in
this article’s Online Repository at www.jacionline.org.

Pathway analysis (Ingenuity, version 01-12; Qiagen) identified
upregulation of pathways predicted to inhibit the development of
dermatitis and ichthyosis (Fig 5, B).42-48 Differential expression
levels of proteins from these pathways were tested for validation
by using qPCR,Western blotting, and/or immunostaining of orga-
notypic skin. All positive and negative findings and untested pro-
teins are displayed in Fig E8 in this article’s Online Repository at
www.jacionline.org.
EMSY knockdown increases long-chain ceramides
Organotypic samples showed an increase in abundance of

epidermal lipid staining with EMSY knockdown (Fig 6,A), which
is in keeping with the increase in levels of proteins involved with
lipid metabolism (eg, STS, ALOXE3, ALOX12B, and APOE).
Mass spectrometric lipid analysis showed an increase in long-
chain ceramides and esterified omega-hydroxy-ceramides species

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


FIG 7. EMSY localization in skin of patients with and without AD. Immunohistochemistry showing EMSY

staining in a predominantly basal distribution in normal human skin in contrast to nuclear staining

extending throughout the epidermis in AD lesions. Representative images are taken from a tiled image of

the whole specimen viewed by using Deep Zoom. Scale bar 5 approximately 20 mm.
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in organotypic samples with EMSY knockdown (Fig 6, B); these
are the ceramides that have previously been reported to show a
reduction in AD skin samples.49
EMSY knockdown increases cell-cell adhesion

structures
Ultrastructural analysis demonstrated an increase in desmo-

some size (Fig 6, C), which is consistent with the observed in-
crease in desmocollin 1 levels. An increase in the number of
layers within the stratum corneum was also observed, which is
consistent with the increase in corneodesmosin levels (Fig 2, F,
and see Fig E9 in this article’s Online Repository at www.
jacionline.org).
EMSY shows predominantly nuclear localization in

the skin affected by AD
To investigate EMSY expression in human skin samples, we

compared 18 normal control skin samples and biopsy specimens
from 14 patients with spongiotic dermatitis, AD, or both. Immu-
nohistochemistry showed considerable interindividual variability
in EMSY staining, despite careful standardization of staining con-
ditions, and there was no consistent difference in total intensity
between cases and control subjects (see Fig E10 in this article’s
Online Repository at www.jacionline.org). However, all 14 AD
cases showed greater nuclear than cytoplasmic staining, and 12
(86%) of 14 cases showed predominantly nuclear staining extend-
ing throughout the epidermis compared with 2 (11%) of 18 con-
trol subjects (example images are shown in Fig 7, and all images
are shown in Fig E10). Similarly, control organotypic samples
showed EMSY staining in nuclei throughout the epidermis,
whereas the organotypic cultures with EMSY knockdown showed
expression predominantly in the basal epidermis in keratinocyte
nuclei. Thus increased nuclear expression is consistent with
increased activity of EMSY as a transcriptional regulator within
keratinocytes in lesional skin of patients with AD.
DISCUSSION
GWASs have provided valuable insight into the pathogenic

mechanisms of many common complex traits, and some have
been exploited for targeted therapy development.5,50,51 Howev-
er, many of the loci identified by GWASs are intergenic, and

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
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the molecular mechanisms require detailed functional analysis
performed in disease-relevant tissue to characterize important
pathomechanisms.52 Increasing understanding of the regulato-
ry features in intergenic DNA53,54 provides insight into
possible effector genes, either locally or distant from variants
identified by GWAS. Skin as an organ that can be cultured
in vitro offers an opportunity to investigate genetic mecha-
nisms using primary cells, quantification of barrier function,
and detailed molecular analyses. Cells extracted from normal
human skin have been used in our model to investigate the ef-
fect of a single candidate gene without the multiple genetic and
epigenetic effects that would be coinherited in cells harvested
from a patient with AD.2 Use of primary cells more closely
represents skin physiology than an immortalized cell line,
and replication in multiple donors is used to control for inter-
individual variation.

Our findings from genomic data and in vitro and ex vivo ana-
lyses converge to provide an understanding of the role of
EMSY in skin barrier function. The epigenetic regulatory mech-
anisms indicated by methylation and chromosomal confirmation
(Fig 1) provide a possible mechanism by which the intergenic
SNPs associated with AD can affect EMSYexpression. However,
additional epigenetic mechanisms,55 including other forms of his-
tone modification, micro-RNAs, and long noncoding RNAs,
might also play roles in EMSY transcriptional control. The greater
nuclear localization of EMSYin lesional skin of patients with AD
indicates increased activity of this transcriptional repressor. This
is in keeping with our findings in primary cell cultures, where
EMSY overexpression leads to a reduction in levels of multiple
proteins that have previously been shown to be biomarkers for
AD.56-58 Improvements in analytic capacity have increased un-
derstanding of the importance of lipid composition in epidermal
physiology and pathophysiology, including atopic disease,59

and the observed increase in relevant lipid species emphasizes
the role of EMSY in controlling multiple aspects of skin barrier
function.

It is interesting to note that EMSY knockdown increases filag-
grin expression, whereas EMSYoverexpression leads to a marked
reduction in profilaggrin levels. This might in part explain the
observation that the genetic risk variants in chromosome
11q13.5 and FLG show a multiplicative effect in population anal-
ysis.60 Chromosome 11q13.5 and the FLG locus also both show
their strongest associations within a subgroup of early-onset
and persistent AD in childhood,61 which is in keeping with their
combined effect leading to a more severe phenotype.

EMSY loss-of-function mutations are rare: they are detected in
1/60,000 unrelated subjects in the Exome Aggregation Con-
sortium,62 the minor allele frequency is approximately 0.001 in
the Exome Variant Server,63 and there are no homozygous loss-
of-function genotypes identified in gnomAD.64 This is consistent
with our finding that even a modest reduction in expression (mean
approximately 33% reduction in mRNA or protein in our experi-
mental model) results in a marked phenotypic change in organo-
typic cultures.

Together, these observations indicate that loss-of-function
mutations are likely to have a deleterious effect, and more
subtle modulation of EMSY expression is required for optimal
skin barrier function. Therefore it is tempting to speculate that
the control of FLG expression and skin barrier function
through EMSY might be a more sensitive mechanism to
exploit than targeting filaggrin directly. It might also be a
more tractable target because the therapeutic effect would be
achieved by knockdown of EMSY rather than attempting to in-
crease expression of filaggrin.

Loci reaching statistical significance in genome-wide ana-
lyses might reflect the combination of more than 1 functional
association, and multieffect loci have been observed in patients
with AD, as well as other complex traits.12,65 Our finding of a
role for EMSY in keratinocytes does not preclude an additional
effect of EMSY through expression in T cells,66 which are known
to play a key role in AD pathogenesis.2 Intriguingly, immunohis-
tochemistry also reveals EMSY staining within the nuclei of
cells in the dermis (Fig 6 and see Fig E10). This might represent
an inflammatory infiltrate, including T cells, and warrants
further investigation. Similarly, the genomic promoter-capture
Hi-C analysis (see Fig E1) provides more support for a possible
promoter-promoter interaction between the GWAS locus and
LRRC32 than EMSY, suggesting that an effect through
LRRC32 expression in keratinocytes or T cells might also play
a role in the pathogenesis of AD. Further work, including
high-resolution 3C,67 could be used to finely map these impor-
tant regulatory interactions.

Expression quantitative trait locus analysis is an approach
that has been used to investigate genes responsible for risk
mechanisms attributable to intergenic loci.68 However, expres-
sion quantitative trait locus analysis relies on the genetic var-
iants having a quantitative effect on mRNA abundance of
sufficient magnitude to be detected with a suitably stringent
level of statistical significance.69 Other mechanisms can affect
disease risk without substantially altering the total amount of
mRNA, such as protein localization at a functional site, as ap-
pears to be the case for EMSY. Furthermore, EMSY has at least
7 isoforms produced by alternative splicing, as well as 14 an-
notated phosphorylation or glycosylation sites (https://www.
uniprot.org/uniprot/Q7Z589); it is likely that these mecha-
nisms also contribute to functional regulation in different
cell and tissue types.

Analysis of a single cell type, the keratinocyte, at different
stages of terminal differentiation represents a reductionist view of
the epidermis, but the skin organotypic model has proved to be a
valuable model for investigation of molecular mechanisms
controlling differentiation in this multilayered tissue.40,70

A limitation to the model is that the various dermal appendages
(eg, hair follicles, sweat glands, and sebaceous glands) are absent,
as are the dermal blood vessels and neurons, although these might
play a role in skin inflammation.71,72 Immune cells of the hemato-
poietic lineage are also missing from this model, but there is
increasing recognition of the role of keratinocytes in immune
signaling,73,74 and the organotypic culture displays innate immu-
nologic mechanisms.

The work presented here has identified EMSYas a therapeutic
target: knockdown in vivo is predicted to improve skin barrier
function and protect against AD. However, considerable further
work is needed, including high-throughput screening to identify
molecules capable of reducing the abundance of nuclear EMSY,
followed by preclinical testing, before these findings can be as-
sessed in clinical trials. The advent of biological therapy to target
the immune component of AD has transformed care for patients
with moderate-to-severe disease,75 but therapies designed to
improve skin barrier function are also required as an alternative
or complementary approach for this complex and therapeutically
challenging disorder.

https://www.uniprot.org/uniprot/Q7Z589
https://www.uniprot.org/uniprot/Q7Z589
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Key messages

d Genetic risk loci offer the opportunity for insight into the
cause of complex disease, but the mechanisms require
detailed molecular investigation.

d The AD-associated locus on chromosome 11q13.5 lies be-
tween 2 candidate genes: EMSY and LRRC32.

d Our genetic, proteomic, and immunohistologic analyses
have together demonstrated a role for EMSY expression
in the control of skin barrier formation and function,
which are of importance in patients with AD.

d Therefore EMSY represents a future therapeutic target in
atopic disease.
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