8,630 research outputs found

    Vortex Dynamics in Anisotropic Traps

    Get PDF
    We investigate the dynamics of linear vortex lattices in anisotropic traps in two-dimensions and show that the interplay between the rotation and the anisotropy leads to a rich but highly regular dynamics.Comment: 6 pages, 6 figure

    Boson Pairs in a One-dimensional Split Trap

    Get PDF
    We describe the properties of a pair of ultracold bosonic atoms in a one-dimensional harmonic trapping potential with a tunable zero-ranged barrier at the trap centre. The full characterisation of the ground state is done by calculating the reduced single-particle density, the momentum distribution and the two-particle entanglement. We derive several analytical expressions in the limit of infinite repulsion (Tonks-Girardeau limit) and extend the treatment to finite interparticle interactions by numerical solution. As pair interactions in double wells form a fundamental building block for many-body systems in periodic potentials, our results have implications for a wide range of problems.Comment: 9 pages, 8 figure

    Universal joint-measurement uncertainty relation for error bars

    Get PDF
    We formulate and prove a new, universally valid uncertainty relation for the necessary error bar widths in any approximate joint measurement of position and momentum

    Fire in a riparian shrub community: Postburn water relations in the Tamarix-Salix association along the lower Colorado River

    Full text link
    Higher water potentials in recovering burned salt-cedar (Tamarix ramosissima) relative to unburned plants and the opposite situation in willow (Salix gooddingii) provide evidence that postfire water stress is reduced in the former but not the latter. Similarly, diurnal patterns of stomatal conductance in these taxa are consistent with the existence of more vigor in burned salt-cedar than willow. Plots of water potential and transpiration demonstrate that hydraulic efficiencies may contribute to differences in fire recovery

    A formal definition and a new security mechanism of physical unclonable functions

    Full text link
    The characteristic novelty of what is generally meant by a "physical unclonable function" (PUF) is precisely defined, in order to supply a firm basis for security evaluations and the proposal of new security mechanisms. A PUF is defined as a hardware device which implements a physical function with an output value that changes with its argument. A PUF can be clonable, but a secure PUF must be unclonable. This proposed meaning of a PUF is cleanly delineated from the closely related concepts of "conventional unclonable function", "physically obfuscated key", "random-number generator", "controlled PUF" and "strong PUF". The structure of a systematic security evaluation of a PUF enabled by the proposed formal definition is outlined. Practically all current and novel physical (but not conventional) unclonable physical functions are PUFs by our definition. Thereby the proposed definition captures the existing intuition about what is a PUF and remains flexible enough to encompass further research. In a second part we quantitatively characterize two classes of PUF security mechanisms, the standard one, based on a minimum secret read-out time, and a novel one, based on challenge-dependent erasure of stored information. The new mechanism is shown to allow in principle the construction of a "quantum-PUF", that is absolutely secure while not requiring the storage of an exponentially large secret. The construction of a PUF that is mathematically and physically unclonable in principle does not contradict the laws of physics.Comment: 13 pages, 1 figure, Conference Proceedings MMB & DFT 2012, Kaiserslautern, German

    Unsharp Quantum Reality

    Get PDF
    The positive operator (valued) measures (POMs) allow one to generalize the notion of observable beyond the traditional one based on projection valued measures (PVMs). Here, we argue that this generalized conception of observable enables a consistent notion of unsharp reality and with it an adequate concept of joint properties. A sharp or unsharp property manifests itself as an element of sharp or unsharp reality by its tendency to become actual or to actualize a specific measurement outcome. This actualization tendency-or potentiality-of a property is quantified by the associated quantum probability. The resulting single-case interpretation of probability as a degree of reality will be explained in detail and its role in addressing the tensions between quantum and classical accounts of the physical world will be elucidated. It will be shown that potentiality can be viewed as a causal agency that evolves in a well-defined way

    A dilemma in representing observables in quantum mechanics

    Get PDF
    There are self-adjoint operators which determine both spectral and semispectral measures. These measures have very different commutativity and covariance properties. This fact poses a serious question on the physical meaning of such a self-adjoint operator and its associated operator measures.Comment: 10 page

    Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys

    Get PDF
    The differences in the thermodynamic functions between the liquid and the crystalline states of three bulk metallic glass forming alloys, Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5, and Zr57Cu15.4Ni12.6Al10Nb5, were calculated. The heat capacity was measured in the crystalline solid, the amorphous solid, the supercooled liquid, and the equilibrium liquid. Using these heat capacity data and the heats of fusion of the alloys, the differences in the thermodynamic functions between the liquid and the crystalline states were determined. The Gibbs free energy difference between the liquid and the crystalline states gives a qualitative measure of the glass forming ability of these alloys. Using the derived entropy difference, the Kauzmann temperatures for these alloys were determined

    Pemphigus: An Autoimmune Complex in Dogs and Cats

    Get PDF
    The name Pemphigus, derived \u27from the Greek word for blister, describes a group of vesiculobullous diseases of the skin of dogs, cats, and humans. The pemphigus complex is an autoimmune disease of the skin characterized by lesions ranging from vesiculobullous/pustular to erosive/ ulcerative. Lesions of pemphigus are due to the binding of autoantibody to an antigen in the epidermal cell membrane or the glycocalyx causing a release of an enzyme(s) resulting in disruption of intercellular attachments and acantholysis. Pemphigus produces lesions that are restricted to the epidermis. More specifically, these lesions are suprabasilar, each variant being characterized by location within the epidermal layer and by location of lesions on the body

    Local simulation of singlet statistics for restricted set of measurement

    Full text link
    The essence of Bell's theorem is that, in general, quantum statistics cannot be reproduced by local hidden variable (LHV) model. This impossibility is strongly manifested while analyzing the singlet state statistics for Bell-CHSH violations. In this work, we provide various subsets of two outcome POVMs for which a local hidden variable model can be constructed for singlet state.Comment: 2 column, 5 pages, 4 figures, new references, abstract modified, accepted in JP
    • 

    corecore