303 research outputs found
Comparison of Coulomb Blockade Thermometers with the International Temperature Scale PLTS-2000
The operation of the primary Coulomb blockade thermometer (CBT) is based on a
measurement of bias voltage dependent conductance of arrays of tunnel junctions
between normal metal electrodes. Here we report on a comparison of a CBT with a
high accuracy realization of the PLTS-2000 temperature scale in the range from
0.008 K to 0.65 K. An overall agreement of about 1% was found for temperatures
above 0.25 K. For lower temperatures increasing differences are caused by
thermalization problems which are accounted for by numerical calculations based
on electron-phonon decoupling.Comment: 6 pages, 5 figure
High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions
Bright proton beams with maximum energies of up to 30MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (21 W cm-2 was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for lm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations
Study of the effect of lattice structure on the transport of MA fast electron currents at the PHELIX laser facility
Measurement of the angle, temperature and flux of fast electrons emitted from intense laser-solid interactions
High-intensity laser-solid interactions generate relativistic electrons, as well as high-energy (multi-MeV) ions and X-rays. The directionality, spectra and total number of electrons that escape atarget-foil is dependent on the absorption, transport and rear-side sheath conditions. Measuring the electrons escaping the target will aid in improving our understanding of these absorption processes and the rear-surface sheath fields that retard the escaping electrons and accelerate ions via the target normal sheath acceleration (TNSA) mechanism. A comprehensive Geant4 study was performed to help analyse measurements made with a wrap-around diagnostic that surrounds the target and uses differential filtering with a FUJI-film image plate detector. The contribution of secondary sources such as X-rays and protons to the measured signal have been taken into account to aid in the retrieval of the electron signal. Angular and spectral data from a high-intensity laser-solid interaction are presented and accompanied by simulations. The total number of emitted electrons has been measured as 2.6 × 1013 with an estimated total energy of 12 ± 1 J from a 100 mu;m Cu target with140 J of incident laser energy during a 4 × 1020 W cm-2 interaction
Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion
An epithermal neutron imager based on detecting alpha particles created by boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons below 0.1 eV, the fast neutrons register insignificantly in the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications
Role of lattice structure and low temperature resistivity on fast electron beam filamentation in carbon
The influence of low temperature (eV to tens-of-eV) electrical resistivity on the onset of the filamentation instability in fast-electron transport is investigated in targets comprising of layers of ordered (diamond) and disordered (vitreous) carbon. It is shown experimentally and numerically that the thickness of the disordered carbon layer influences the degree of filamentation of the fast-electron beam. Strong filamentation is produced if the thickness is of the order of 60 μm or greater, for an electron distribution driven by a sub-picosecond, mid-1020 Wcm-2 laser pulse. It is shown that the position of the vitreous carbon layer relative to the fast-electron source (where the beam current density and background temperature are highest) does not have a strong effect because the resistive filamentation growth rate is high in disordered carbon over a wide range of temperatures up to the Spitzer regime
Annular fast electron transport in silicon arising from low-temperature resistivity
Fast electron transport in Si, driven by ultra-intense laser pulses, is investigated experimentally and via 3D hybrid-PIC simulations. A transition from a Gaussian-like to an annular fast electron beam profile is demonstrated and explained by resistively generated magnetic fields. The results highlight the potential to completely transform the beam transport pattern by tailoring the resistivity-temperature profile at temperatures as low as a few eV
Dual Ion Species Plasma Expansion from Isotopically Layered Cryogenic Targets
A dual ion species plasma expansion scheme from a novel target structure is introduced, in which a nanometer thick layer of pure deuterium exists as a buffer species at the target-vacuum interface of a hydrogen plasma. Modelling shows that by controlling the deuterium layer thickness, a composite H +/D+ ion beam can be produced by TNSA, with an adjustable ratio of ion densities, as high energy proton acceleration is suppressed by the acceleration of a spectrally peaked deuteron beam. Particle in cell modelling shows that a (4.3±0.7) MeV per nucleon deuteron beam is accelerated, in a directional cone of half angle 9◦ . Experimentally, this was investigated using state of the art cryogenic targetry and a spectrally peaked deuteron beam of (3.4±0.7) MeV per nucleon was measured in a cone of half angle 7-9◦ , whilst maintaining a significant TNSA proton component
Laser-driven X-ray and neutron source development for industrial applications of plasma accelerators
Pulsed beams of energetic X-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and X-ray beam generation. Measurements and Monte-Carlo radiation transport simulations show that neutron yield is increased by a factor ~ 2 when a 1mm copper foil is placed behind a 2mm lithium foil, compared to using a 2cm block of lithium only. We explore X-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using >1ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent Bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte-Carlo code. We also demonstrate the unique capability of laser-driven X-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10ps drive pulse is presented for the first time, demonstrating that features of 200µm size are resolved when projected at high magnification
Ion acceleration and plasma jet formation in ultra-thin foils undergoing expansion and relativistic transparency
At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored
- …
