1,967 research outputs found
Fast magnetic reconnection in laser-produced plasma bubbles
Recent experiments have observed magnetic reconnection in
high-energy-density, laser-produced plasma bubbles, with reconnection rates
observed to be much higher than can be explained by classical theory. Based on
fully kinetic particle simulations we find that fast reconnection in these
strongly driven systems can be explained by magnetic flux pile-up at the
shoulder of the current sheet and subsequent fast reconnection via two-fluid,
collisionless mechanisms. In the strong drive regime with two-fluid effects, we
find that the ultimate reconnection time is insensitive to the nominal system
Alfven time.Comment: 5 pages, 4 figures, accepted by Phys. Rev. Let
All sky CMB map from cosmic strings integrated Sachs-Wolfe effect
By actively distorting the Cosmic Microwave Background (CMB) over our past
light cone, cosmic strings are unavoidable sources of non-Gaussianity.
Developing optimal estimators able to disambiguate a string signal from the
primordial type of non-Gaussianity requires calibration over synthetic full sky
CMB maps, which till now had been numerically unachievable at the resolution of
modern experiments. In this paper, we provide the first high resolution full
sky CMB map of the temperature anisotropies induced by a network of cosmic
strings since the recombination. The map has about 200 million sub-arcminute
pixels in the healpix format which is the standard in use for CMB analyses
(Nside=4096). This premiere required about 800,000 cpu hours; it has been
generated by using a massively parallel ray tracing method piercing through a
thousands of state of art Nambu-Goto cosmic string numerical simulations which
pave the comoving volume between the observer and the last scattering surface.
We explicitly show how this map corrects previous results derived in the flat
sky approximation, while remaining completely compatible at the smallest
scales.Comment: 8 pages, 4 figures, uses RevTeX. References added, matches published
versio
Three-dimensional Gross-Pitaevskii solitary waves in optical lattices: stabilization using the artificial quartic kinetic energy induced by lattice shaking
In this Letter, we show that a three-dimensional Bose-Einstein solitary wave
can become stable if the dispersion law is changed from quadratic to quartic.
We suggest a way to realize the quartic dispersion, using shaken optical
lattices. Estimates show that the resulting solitary waves can occupy as little
as -th of the Brillouin zone in each of the three directions and
contain as many as atoms, thus representing a \textit{fully
mobile} macroscopic three-dimensional object.Comment: 8 pages, 1 figure, accepted in Phys. Lett.
Primordial helium recombination. I. Feedback, line transfer, and continuum opacity
Precision measurements of the cosmic microwave background temperature anisotropy on scales ℓ>500 will be available in the near future. Successful interpretation of these data is dependent on a detailed understanding of the damping tail and cosmological recombination of both hydrogen and helium. This paper and two companion papers are devoted to a precise calculation of helium recombination. We discuss several aspects of the standard recombination picture, and then include feedback, radiative transfer in He i lines with partial redistribution, and continuum opacity from H i photoionization. In agreement with past calculations, we find that He ii recombination proceeds in Saha equilibrium, whereas He i recombination is delayed relative to Saha due to the low rates connecting excited states of He i to the ground state. However, we find that at z<2200 the continuum absorption by the rapidly increasing H i population becomes effective at destroying photons in the He i 21Po-11S line, causing He i recombination to finish around z≃1800, much earlier than previously estimated
Harmonics generation in electron-ion collisions in a short laser pulse
Anomalously high generation efficiency of coherent higher field-harmonics in
collisions between {\em oppositely charged particles} in the field of
femtosecond lasers is predicted. This is based on rigorous numerical solutions
of a quantum kinetic equation for dense laser plasmas which overcomes
limitations of previous investigations.Comment: 4 pages, 4 eps-figures include
New CMB Power Spectrum Constraints from MSAMI
We present new cosmic microwave background (CMB) anisotropy results from the
combined analysis of the three flights of the first Medium Scale Anisotropy
Measurement (MSAM1). This balloon-borne bolometric instrument measured about 10
square degrees of sky at half-degree resolution in 4 frequency bands from 5.2
icm to 20 icm with a high signal-to-noise ratio. Here we present an overview of
our analysis methods, compare the results from the three flights, derive new
constraints on the CMB power spectrum from the combined data and reduce the
data to total-power Wiener-filtered maps of the CMB. A key feature of this new
analysis is a determination of the amplitude of CMB fluctuations at . The analysis technique is described in a companion paper by Knox.Comment: 9 pages, 6 included figure
Shape Invariance in the Calogero and Calogero-Sutherland Models
We show that the Calogero and Calogero-Sutherland models possess an N-body
generalization of shape invariance. We obtain the operator representation that
gives rise to this result, and discuss the implications of this result,
including the possibility of solving these models using algebraic methods based
on this shape invariance. Our representation gives us a natural way to
construct supersymmetric generalizations of these models, which are interesting
both in their own right and for the insights they offer in connection with the
exact solubility of these models.Comment: Latex file, 23 pages, no picture
- …
