128 research outputs found

    Tree-Residue Vertex-Breaking: a new tool for proving hardness

    Get PDF
    In this paper, we introduce a new problem called Tree-Residue Vertex-Breaking (TRVB): given a multigraph G some of whose vertices are marked "breakable," is it possible to convert G into a tree via a sequence of "vertex-breaking" operations (replacing a degree-k breakable vertex by k degree-1 vertices, disconnecting the k incident edges)? We characterize the computational complexity of TRVB with any combination of the following additional constraints: G must be planar, G must be a simple graph, the degree of every breakable vertex must belong to an allowed list B, and the degree of every unbreakable vertex must belong to an allowed list U. The two results which we expect to be most generally applicable are that (1) TRVB is polynomially solvable when breakable vertices are restricted to have degree at most 3; and (2) for any k >= 4, TRVB is NP-complete when the given multigraph is restricted to be planar and to consist entirely of degree-k breakable vertices. To demonstrate the use of TRVB, we give a simple proof of the known result that Hamiltonicity in max-degree-3 square grid graphs is NP-hard. We also demonstrate a connection between TRVB and the Hypergraph Spanning Tree problem. This connection allows us to show that the Hypergraph Spanning Tree problem in k-uniform 2-regular hypergraphs is NP-complete for any k >= 4, even when the incidence graph of the hypergraph is planar

    Cookie Clicker

    Full text link
    Cookie Clicker is a popular online incremental game where the goal of the game is to generate as many cookies as possible. In the game you start with an initial cookie generation rate, and you can use cookies as currency to purchase various items that increase your cookie generation rate. In this paper, we analyze strategies for playing Cookie Clicker optimally. While simple to state, the game gives rise to interesting analysis involving ideas from NP-hardness, approximation algorithms, and dynamic programming

    Computational Complexity of Generalized Push Fight

    Get PDF
    We analyze the computational complexity of optimally playing the two-player board game Push Fight, generalized to an arbitrary board and number of pieces. We prove that the game is PSPACE-hard to decide who will win from a given position, even for simple (almost rectangular) hole-free boards. We also analyze the mate-in-1 problem: can the player win in a single turn? One turn in Push Fight consists of up to two "moves" followed by a mandatory "push". With these rules, or generalizing the number of allowed moves to any constant, we show mate-in-1 can be solved in polynomial time. If, however, the number of moves per turn is part of the input, the problem becomes NP-complete. On the other hand, without any limit on the number of moves per turn, the problem becomes polynomially solvable again

    Computational Complexity of Motion Planning of a Robot through Simple Gadgets

    Get PDF
    We initiate a general theory for analyzing the complexity of motion planning of a single robot through a graph of "gadgets", each with their own state, set of locations, and allowed traversals between locations that can depend on and change the state. This type of setup is common to many robot motion planning hardness proofs. We characterize the complexity for a natural simple case: each gadget connects up to four locations in a perfect matching (but each direction can be traversable or not in the current state), has one or two states, every gadget traversal is immediately undoable, and that gadget locations are connected by an always-traversable forest, possibly restricted to avoid crossings in the plane. Specifically, we show that any single nontrivial four-location two-state gadget type is enough for motion planning to become PSPACE-complete, while any set of simpler gadgets (effectively two-location or one-state) has a polynomial-time motion planning algorithm. As a sample application, our results show that motion planning games with "spinners" are PSPACE-complete, establishing a new hard aspect of Zelda: Oracle of Seasons

    Who witnesses The Witness? Finding witnesses in The Witness is hard and sometimes impossible

    Full text link
    We analyze the computational complexity of the many types of pencil-and-paper-style puzzles featured in the 2016 puzzle video game The Witness. In all puzzles, the goal is to draw a simple path in a rectangular grid graph from a start vertex to a destination vertex. The different puzzle types place different constraints on the path: preventing some edges from being visited (broken edges); forcing some edges or vertices to be visited (hexagons); forcing some cells to have certain numbers of incident path edges (triangles); or forcing the regions formed by the path to be partially monochromatic (squares), have exactly two special cells (stars), or be singly covered by given shapes (polyominoes) and/or negatively counting shapes (antipolyominoes). We show that any one of these clue types (except the first) is enough to make path finding NP-complete ("witnesses exist but are hard to find"), even for rectangular boards. Furthermore, we show that a final clue type (antibody), which necessarily "cancels" the effect of another clue in the same region, makes path finding Σ2\Sigma_2-complete ("witnesses do not exist"), even with a single antibody (combined with many anti/polyominoes), and the problem gets no harder with many antibodies. On the positive side, we give a polynomial-time algorithm for monomino clues, by reducing to hexagon clues on the boundary of the puzzle, even in the presence of broken edges, and solving "subset Hamiltonian path" for terminals on the boundary of an embedded planar graph in polynomial time.Comment: 72 pages, 59 figures. Revised proof of Lemma 3.5. A short version of this paper appeared at the 9th International Conference on Fun with Algorithms (FUN 2018

    A Data Fusion Perspective on Human Motion Analysis Including Multiple Camera Applications

    Get PDF
    Proceedings of: 5th International Work-Conference on the Interplay Between Natural and Artificial Computation, (IWINAC 2013). Mallorca, Spain, June 10-14.Human motion analysis methods have received increasing attention during the last two decades. In parallel, data fusion technologies have emerged as a powerful tool for the estimation of properties of objects in the real world. This papers presents a view of human motion analysis from the viewpoint of data fusion. JDL process model and Dasarathy's input-output hierarchy are employed to categorize the works in the area. A survey of the literature in human motion analysis from multiple cameras is included. Future research directions in the area are identified after this review.Publicad
    • …
    corecore