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Abstract
In this paper, we introduce a new problem called Tree-Residue Vertex-Breaking (TRVB): given
a multigraph G some of whose vertices are marked “breakable,” is it possible to convert G into
a tree via a sequence of “vertex-breaking” operations (replacing a degree-k breakable vertex by
k degree-1 vertices, disconnecting the k incident edges)?

We characterize the computational complexity of TRVB with any combination of the following
additional constraints: G must be planar, G must be a simple graph, the degree of every breakable
vertex must belong to an allowed list B, and the degree of every unbreakable vertex must belong
to an allowed list U . The two results which we expect to be most generally applicable are that
(1) TRVB is polynomially solvable when breakable vertices are restricted to have degree at most
3; and (2) for any k ≥ 4, TRVB is NP-complete when the given multigraph is restricted to be
planar and to consist entirely of degree-k breakable vertices. To demonstrate the use of TRVB,
we give a simple proof of the known result that Hamiltonicity in max-degree-3 square grid graphs
is NP-hard.

We also demonstrate a connection between TRVB and the Hypergraph Spanning Tree prob-
lem. This connection allows us to show that the Hypergraph Spanning Tree problem in k-uniform
2-regular hypergraphs is NP-complete for any k ≥ 4, even when the incidence graph of the hy-
pergraph is planar.
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1 Introduction

In this paper, we introduce the Tree-Residue Vertex-Breaking (TRVB) problem. Given
a multigraph G some of whose vertices are marked “breakable,” TRVB asks whether it
is possible to convert G into a tree via a sequence of applications of the vertex-breaking
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→

Figure 1 The operation of breaking a vertex. The vertex (left) is replaced by a set of degree-1
vertices with the same edges (right).

operation: replacing a degree-k breakable vertex with k degree-1 vertices, disconnecting the
incident edges, as shown in Figure 1.

In this paper, we analyze the computational complexity of this problem as well as several
variants (special cases) where G is restricted with any subset of the following additional
constraints:

1. every breakable vertex of G must have degree from a list B of allowed degrees;
2. every unbreakable vertex of G must have degree from a list U of allowed degrees;
3. G is planar;
4. G is a simple graph (rather than a multigraph).

Modifying TRVB to include these constraints makes it easier to reduce from the TRVB
problem to some other. For example, having a restricted list of possible breakable vertex
degrees B allows a reduction to include gadgets only for simulating breakable vertices of those
degrees, whereas without that constraint, the reduction would have to support simulation of
breakable vertices of any degree.

We prove the following results (summarized in Table 1), which together fully classify the
variants of TRVB into polynomial-time solvable and NP-complete problems:
1. Every TRVB variant whose breakable vertices are only allowed to have degrees of at most

3 is solvable in polynomial time.
2. Every planar simple graph TRVB variant whose breakable vertices are only allowed to

have degrees of at least 6 and whose unbreakable vertices are only allowed to have degrees
of at least 5 is solvable in polynomial time (and in fact the correct output is always “no”).

3. In all other cases, the TRVB variant is NP-complete. In particular, the TRVB variant
is NP-complete if the variant allows breakable vertices of some degree k ≥ 4, and in
the planar graph case, also allows either breakable vertices of some degree b ≤ 5 or
unbreakable vertices of some degree u ≤ 4. For example, for any k ≥ 4, TRVB is
NP-complete in planar multigraphs whose vertices are all breakable and have degree k.

Among these results, we expect the most generally applicable to be the results that (1)
TRVB is polynomially solvable when breakable vertices are restricted to have degree at most
3; and (2) for any k ≥ 4, TRVB is NP-complete when the given multigraph is restricted to
be planar and to consist entirely of degree-k breakable vertices.

Application to proving hardness

In general, the TRVB problem is useful when proving NP-hardness of what could be called
single-traversal problems: problems in which some space (e.g., a configuration graph or a
grid) must be traversed in a single path or cycle subject to local constraints. Hamiltonian
Cycle and its variants fall under this category, but so do other problems. For example, a
single traversal problem may allow the solution path/cycle to skip certain vertices entirely
while mandating other local constraints. In other words, TRVB can be a useful alternative
to Hamiltonian Cycle when proving NP-hardness of problems related to traversal.
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Table 1 A summary of this paper’s results (where B and U are the allowed breakable and
unbreakable vertex degrees).

All breakable
vertices have
small degree
(B ⊆ {1, 2, 3})

Graph
restrictions

All vertices have large
degree (B ∩ {1, 2, 3, 4} = ∅
and U ∩ {1, 2, 3, 4, 5} = ∅)

TRVB variant
complexity Section

Yes ∗ ∗ Polynomial Time Section 9

No Planar or simple
or unrestricted ∗ NP-complete Sections 4, 5, 6

No Planar and
simple No NP-complete Section 7

No Planar and
simple Yes

Polynomial Time
(every instance is
a “no” instance)

Section 8

Figure 2 Ab-
straction of a pos-
sible edge gadget
(top) and the local
solution (bottom).
The bold paths are
(forced to be) part of
the traversal while
the “inside” of the
gadget is shown in
grey.

Figure 3 Abstraction of a possible breakable vertex gadget. The gadget
should join some number of edge gadgets (in this case four) as shown on the
left. The center and right figures show the two possible local solutions to the
breakable vertex gadget. One solution connects the interiors of the incoming
edge gadgets within the vertex gadget while the other disconnects them. In
both figures, the bold paths are part of the traversal, while the “inside” of the
gadget is shown in grey.

To prove a single-traversal problem hard by reducing from TRVB, it is sufficient to
demonstrate two gadgets: an edge gadget and a breakable degree-k vertex gadget for some
k ≥ 4. This is because TRVB remains NP-hard even when the only vertices present are
degree-k breakable vertices for some k ≥ 4. Furthermore, since this version of TRVB
remains NP-hard even for planar multigraphs, this approach can be used even when the
single-traversal problem under consideration involves traversal of a planar space.

One possible approach for building the gadgets is as follows. The edge gadget should
contain two parallel paths, both of which must be traversed because of the local constraints
of the single-traversal problem (see Figure 2). The vertex gadget should have exactly
two possible solutions satisfying the local constraints of the problem: one solution should
disconnect the regions inside all the adjoining edge gadgets, while the other should connect
these regions inside the vertex gadget (see Figure 3). We then simulate the multigraph from
the input TRVB instance by placing these edge and vertex gadgets in the shape of the input
multigraph as shown in Figure 4.

When trying to solve the resulting single-traversal instance, the only option (while
satisfying local constraints) is to choose one of the two possible local solutions at each vertex
gadget, corresponding to the choice of whether to break the vertex. The candidate solution

SWAT 2018



32:4 Tree-Residue Vertex-Breaking: a new tool for proving hardness

→

Figure 4 The input multigraph on
the left could be converted into a layout
of edge and vertex gadgets as shown
on the right. In this example, we use
a grid layout; in general, we could use
any layout consistent with the edge and
vertex gadgets.

→ →

Figure 5 A choice of which vertices to break in the input
multigraph (left) corresponds to a choice of local solutions
at each of the breakable vertex gadgets, thereby yielding a
candidate solution to the single-traversal instance (center).
As a result, the shape of the interior of the candidate
solution (right) is essentially the same as the shape of the
residual multigraph after breaking vertices.

produced will satisfy all local constraints, but might still not satisfy the global (single cycle)
constraint. Notice that the candidate solution is the boundary of the region “inside” the
local solutions to the edge and vertex gadgets, and that this region ends up being the same
shape as the multigraph obtained after breaking vertices. See Figure 5 for an example. The
boundary of this region is a single cycle if and only if the region is connected and hole-free.
Since the shape of this region is the same as the shape of the multigraph obtained after
breaking vertices, this condition on the region’s shape is equivalent to the condition that
the residual multigraph must be connected and acyclic, or in other words, a tree. Thus, this
construction yields a correct reduction, and in general this proof idea can be used to show
NP-hardness of single-traversal problems.

Outline

In Section 2, we give an example of an NP-hardness proof following the above strategy. By
reducing from TRVB, we give a simple proof that Hamiltonian Cycle in max-degree-3 square
grid graphs is NP-hard (a result previously shown in [3]). We also use the same proof idea
in manuscript [1] to show the novel result that Hamiltonian Cycle in hexagonal thin grid
graphs is NP-hard.

In Section 3, we formally define the variants of TRVB under consideration. In the full
version of this paper, we prove membership in NP and provide the obvious reductions between
the variants.

Sections 4–7 address our NP-hardness results. In Section 4, we reduce from an NP-hard
problem to show that Planar TRVB with only degree-k breakable vertices and unbreakable
degree-4 vertices is NP-hard for any k ≥ 4. All the other hardness results in this paper are
derived directly or indirectly from this one. In Section 5, we prove the NP-completeness
of the variants of TRVB and of Planar TRVB in which breakable vertices of some degree
k ≥ 4 are allowed. Similarly, we show in Section 6 that Graph TRVB is also NP-complete
in the presence of breakable vertices of degree k ≥ 4. Finally, in Section 7, we show that
Planar Graph TRVB is NP-complete provided (1) breakable vertices of some degree k ≥ 4
are allowed and (2) either breakable vertices of degree b ≤ 5 or unbreakable vertices of degree
u ≤ 4 are allowed.

Next, in Section 8, we proceed to one of our polynomial-time results: that a variant of
TRVB is solvable in polynomial time whenever the multigraph is restricted to be a planar
graph, the breakable vertices are restricted to have degree at least 6, and the unbreakable
vertices are restricted to have degree at least 5. In such a graph, it is impossible to break
a set of breakable vertices and get a tree. As a result, variants of TRVB satisfying these
restrictions are always solvable with a trivial polynomial time algorithm.
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In Section 9, we establish a connection between TRVB and the Hypergraph Spanning Tree
problem (given a hypergraph, decide whether it has a spanning tree). Namely, Hypergraph
Spanning Tree on a hypergraph is equivalent to TRVB on the corresponding incidence graph
with edge nodes marked breakable and vertex nodes marked unbreakable. This equivalence
allows us to construct a reduction from TRVB to Hypergraph Spanning Tree: given a TRVB
instance, we can first convert that instance into a bipartite TRVB instance (by inserting
unbreakable vertices between adjacent breakable vertices and merging adjacent unbreakable
vertices) and then construct the hypergraph whose incidence graph is the bipartite TRVB
instance.

This connection allows us to obtain results about both TRVB and Hypergraph Spanning
Tree. By leveraging known results about Hypergraph Spanning Tree (see [2]), we prove
that TRVB is polynomial-time solvable when all breakable vertices have small degrees
(B ⊆ {1, 2, 3}). This final result completes our classification of the variants of TRVB. We
also apply the hardness results from this paper to obtain new results about Hypergraph
Spanning Tree: namely, Hypergraph Spanning Tree is NP-complete in k-uniform 2-regular
hypergraphs for any k ≥ 4, even when the incidence graph of the hypergraph is planar. This
improves the previously known result that Hypergraph Spanning Tree is NP-complete in
k-uniform hypergraphs for any k ≥ 4 (see [5]).

2 Example of how to use TRVB: Hamiltonicity in max-degree-3
square grid graphs

In this section, we show one example of using TRVB to prove hardness of a single-traversal
problem. Namely, the result that Hamiltonian Cycle in max-degree-3 square grid graphs is
NP-hard [3] can be reproduced with the following much simpler reduction.

The reduction is from the variant of TRVB in which the input multigraph is restricted
to be planar and to have only degree-4 breakable vertices, which is shown NP-complete in
Section 5. Given a planar multigraph G with only degree-4 breakable vertices, we output a
max-degree-3 square grid graph by appropriately placing breakable degree-4 vertex gadgets
(shown in Figure 7) and routing edge gadgets (shown in Figure 6) to connect them. The
appropriate placement of gadgets can be accomplished in polynomial time by the results
from [6]. Each edge gadget consists of two parallel paths of edges a distance of two apart,
and as shown in the figure, these paths can turn, allowing the edge to be routed as necessary
(without parity constraints). Each breakable degree-4 vertex gadget joins four edge gadgets
in the configuration shown. Note that, as desired, the maximum degree of any vertex in the
resulting grid graph is 3.

Consider any candidate set of edges C that could be a Hamiltonian cycle in the resulting
grid graph. In order for C to be a Hamiltonian cycle, C must satisfy both the local constraint
that every vertex is incident to exactly two edges in C and the global constraint that C is
a cycle (rather than a set of disjoint cycles). It is easy to see that, in order to satisfy the
local constraint, every edge in every edge gadget must be in C. Similarly, there are only two
possibilities within each breakable degree-4 vertex gadget which satisfy the local constraint.
These possibilities are shown in Figure 8.

We can identify the choice of local solution at each breakable degree-4 vertex gadget
with the choice of whether to break the corresponding vertex. Under this bijection, every
candidate solution C satisfying local constraints corresponds with a possible multigraph
G′ formed from G by breaking vertices. The key insight is that the shape of the region R

inside C is exactly the shape of G′. This is shown for an example graph-piece in Figure 9.

SWAT 2018
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Figure 6 An
edge gadget con-
sisting of two par-
allel paths a dis-
tance of 2 apart.

Figure 7 A degree-4
breakable vertex gadget.

Figure 8 The two possible solutions to the ver-
tex gadget from Figure 7 that satisfy the local con-
straints imposed by the Hamiltonian Cycle problem
(broken on the left and unbroken on the right).

The boundary of R, also known as C, is exactly one cycle if and only if R is connected
and hole-free. Since the shape of region R is the same as the shape of multigraph G′, this
corresponds to the condition that G′ is connected and acyclic, or in other words that G′ is a
tree. Thus, there exists a candidate solution C to the Hamiltonian Cycle instance (satisfying
the local constraints) that is an actual solution (also satisfying the global constraints) if and
only if G is a “yes” instance of TRVB. Therefore, Hamiltonian Cycle in max-degree-3 square
grid graphs is NP-hard.

3 Problem variants

In this section, we will formally define the variants of TRVB under consideration. In the full
version of the paper, we also prove some basic results about these variants.

To begin, we formally define the TRVB problem. The multigraph operation of breaking
vertex v in undirected multigraph G results in a new multigraph G′ by removing v, adding a
number of new vertices equal to the degree of v in G, and connecting these new vertices to
the neighbors of v in G in a one-to-one manner (as shown in Figure 1 in Section 1). Using
this definition, we pose the TRVB problem:

I Problem 1. The Tree-Residue Vertex-Breaking Problem (TRVB) takes as input a multi-
graph G whose vertices are partitioned into two sets VB and VU (called the breakable and
unbreakable vertices respectively), and asks to decide whether there exists a set S ⊆ VB such
that after breaking every vertex of S in G, the resulting multigraph is a tree.

In order to avoid trivial cases, we consider only input graphs that have no degree-0
vertices.

Next, suppose B and U are both sets of positive integers. Then we can constrain the
breakable vertices of the input to have degrees in B and constrain the unbreakable vertices
of the input to have degrees in U . The resulting constrained version of the problem is defined
below:

I Definition 2. The (B, U)-variant of the TRVB problem, denoted (B, U)-TRVB, is the
special case of TRVB where the input multigraph is restricted so that every breakable vertex
in G has degree in B and every unbreakable vertex in G has degree in U .

Throughout this paper we consider only sets B and U for which membership can be
computed in pseudopolynomial time (i.e., membership of n in B or U can be computed in
time polynomial in n). As a result, verifying that the vertex degrees of a given multigraph
are allowed can be done in polynomial time.
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Figure 9 Given a multigraph including the piece shown in the top left, the output grid graph
might include the section shown in the bottom left (depending on graph layout). If the top vertex
in this piece of the multigraph is broken, resulting in the piece of multigraph G′ shown in the top
right, then the resulting candidate solution C (shown in bold) in the bottom right contains region R

(shown in grey) whose shape resembles the shape of G′.

breakable unbreakable

Figure 10 Depiction of vertex types in this paper.

We can also define three further variants of the problem depending on whether G is
constrained to be planar, a (simple) graph, or both: the Planar (B, U)-variant of the TRVB
problem (denoted Planar (B, U)-TRVB), the Graph (B, U)-variant of the TRVB (denoted
Graph (B, U)-TRVB), and the Planar Graph (B, U)-variant of the TRVB problem (denoted
Planar Graph (B, U)-TRVB).

3.1 Diagram conventions
Throughout this paper, when drawing diagrams, we will use filled circles to represent
unbreakable vertices and unfilled circles to represent breakable vertices. See Figure 10.

4 Planar ({k}, {4})-TRVB is NP-hard for any k ≥ 4

The overall goal of this section is to prove NP-hardness for several variants of TRVB. In
particular, we will introduce an NP-hard variant of the Hamiltonicity problem in Section 4.1
and then reduce from this problem to Planar ({k}, {4})-TRVB for any k ≥ 4 in Section 4.2.
This is the only reduction from an external problem in this paper. All further hardness
results will be derived from this one via reductions between different TRVB variants.

SWAT 2018
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4.1 Planar Hamiltonicity in Directed Graphs with all in- and
out-degrees 2 is NP-hard

The following problem was shown NP-complete in [4]:

I Problem 3. The Planar Max-Degree-3 Hamiltonicity Problem asks for a given planar
directed graph whose vertices each have total degree at most 3 whether the graph is Hamiltonian
(has a Hamiltonian cycle).

For the sake of simplicity we will assume that every vertex in an input instance of the
Planar Max-Degree-3 Hamiltonicity problem has both in- and out-degree at least 1 (and
therefore at most 2). This is because the existence of a vertex with in- or out-degree 0 in a
graph immediately implies that there is no Hamiltonian cycle in that graph.

As it turns out, this problem is not quite what we need for our reduction, so below we
introduce several new definitions and define a new variant of the Hamiltonicity problem:

I Definition 4. Call a vertex v ∈ G alternating for a given planar embedding of a planar
directed graph G if, when going around the vertex, the edges switch from inward to outward
oriented more than once. Otherwise, call the vertex non-alternating. A non-alternating
vertex has all its inward oriented edges in one contiguous section and all its outward oriented
edges in another; an alternating vertex on the other hand alternates between inward and
outward sections more times.

We call a planar embedding of planar directed graph G a planar non-alternating embedding
if every vertex is non-alternating under that embedding. If G has a planar non-alternating
embedding we say that G is a planar non-alternating graph.

I Problem 5. The Planar Non-Alternating Indegree-2 Outdegree-2 Hamiltonicity Problem
asks, for a given planar non-alternating directed graph whose vertices each have in- and
out-degree exactly 2, whether the graph is Hamiltonian

In the full version of this paper we prove that this problem is NP-hard by reducing from
the Planar Max-Degree-3 Hamiltonicity Problem:

I Theorem 6. The Planar Non-Alternating Indegree-2 Outdegree-2 Hamiltonicity Problem
is NP-hard.

4.2 Reduction to Planar ({k}, {4})-TRVB for any k ≥ 4
Consider the following algorithm Rk:

I Definition 7. For k ≥ 4, algorithm Rk takes as input a planar non-alternating graph
G whose vertex in- and out-degrees all equal 2, and outputs an instance M ′ of Planar
({k}, {4})-TRVB.

To begin, we construct a labeled undirected multigraph M as follows; refer to Figure 11.
First we build all the vertices (and vertex labels) of M . For each vertex in G, we include

an unbreakable vertex in M and for each edge in G we include a breakable vertex in M . If v

is a vertex or e is an edge of G, we define m(v) and m(e) to be the corresponding vertices in
M .

Next we add all the edges of M . Fix vertex v in G. Let (u1, v) and (u2, v) be the edges
into v and let (v, w1) and (v, w2) be the edges out of v. Then add the following edges to M :

Add an edge from m(v) to each of m((u1, v)), m((u2, v)), m((v, w1)), and m((v, w2)).
Add an edge from m((v, w1)) to m((v, w2)).
Add k − 3 edges from m((u1, v)) to m((u2, v)).
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Figure 11 If the planar non-alternating directed graph on
the left is G, and if k = 4, then we first produce multigraph M

on the right. If k > 4, then the output M remains the same
except some edges are duplicated.

Figure 12 We modify M in
the vicinity of one vertex v̂ to get
the output M ′ of our reduction.
This figure shows one possible M ′

for the M in Figure 11, where v̂

is chosen to be the bottom left
vertex.

Figure 13 This figure shows a Hamiltonian cycle in example graph G from Figure 11 (left) and
the corresponding solution of TRVB instance M ′ shown in Figure 12 (right).

Finally, pick any specific vertex v̂ in G; refer to Figure 12. Let (u1, v̂) and (u2, v̂) be the
edges into v̂ and let (v̂, w1) and (v̂, w2) be the edges out of v̂. We modify M by removing
vertex m(v̂) (and all incident edges), and adding the two edges (m((u1, v̂)), m((u2, v̂))),
and (m((v̂, w1)), m((v̂, w2))). Call the resulting multigraph M ′ and return it as output of
algorithm Rk.

We prove in the full version of this paper that algorithm Rk is a polynomial time reduction
from the Planar Non-Alternating Indegree-2 Outdegree-2 Hamiltonicity Problem to Planar
({k}, {4})-TRVB. Figure 13 demonstrates the correspondence between a Hamiltonian Cycle
in input G and a TRVB solution in output Rk(G) = M ′. Thus we have the following:

I Theorem 8. Planar ({k}, {4})-TRVB is NP-hard for any k ≥ 4.

5 Planar TRVB and TRVB are NP-complete with high-degree
breakable vertices

I Theorem 9. Planar (B, U)-TRVB is NP-complete if B contains any k ≥ 4. Also (B, U)-
TRVB is NP-complete if B contains any k ≥ 4.

SWAT 2018
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Q0 Q1

P0 P1

Figure 14 A gadget
simulating an unbreak-
able degree-4 vertex us-
ing a planar arrangement
of only breakable degree-
4 vertices.

Q

P0 P1 P2 P3 P2a-1......

k - 2a edges

...

k - 1 edges

...

Figure 15 A gadget simulating an un-
breakable degree-(k − 2a) vertex using only
breakable degree-k vertices arranged in a pla-
nar manner. For k > 4, choosing a appro-
priately yields an unbreakable degree-3 or
degree-4 gadget.

Figure 16 The degree-
4 unbreakable vertex on
the left can be simu-
lated with two degree-3
unbreakable vertices as
shown on the right while
maintaining planarity.

...

...

Q1 Q2 Q3 Q4 Qk-1 Qk

P1 P2 P3 Pk-2

Figure 17 A gadget simulating an unbreakable degree-2 vertex using only breakable degree-k
vertices arranged without self loops or duplicated edges.

The basic idea for this theorem is to reduce from Planar ({k}, {4})-TRVB to Planar
({k}, ∅)-TRVB by creating a gadget which simules the behavior of an unbreakable degree-4
vertex using only breakable degree-k vertices. Figures 14, 15, and 16 sketch the construction
of this gadget.

6 Graph TRVB is NP-complete with high-degree breakable vertices

I Theorem 10. Graph (B, U)-TRVB is NP-complete if B contains any k ≥ 4.

The basic idea for this theorem is to reduce from (B, U)-TRVB by inserting a gadget into
each edge which behaves like a degree-2 unbreakable vertices and which is built entirely out
of breakable degree-k vertices. This converts the multigraph into a simple graph without
affecting the answer of the TRVB instance and without adding any new values to B or U .
Figure 17 sketches the construction of this gadget.

7 Planar Graph TRVB is NP-hard with both low-degree vertices and
high-degree breakable vertices

I Theorem 11. Planar Graph (B, U)-TRVB is NP-complete if (1) either B∩{1, 2, 3, 4, 5} 6= ∅
or U ∩ {1, 2, 3, 4} 6= ∅ and (2) there exists a k ≥ 4 with k ∈ B.

As in the previous section, the idea for this theorem is to use unbreakable degree-2 vertex
gadgets to reduce from Planar (B, U)-TRVB, converting the input multigraph into a simple
graph. We build such a gadget in one of several ways, depending on which vertex types are
present. Figures 18–24 sketch the gadget construction for the various cases. See the full
version of this paper for details.
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k edges

... ...

Figure 18 A gadget simulat-
ing an unbreakable degree-2 ver-
tex using only breakable degree-
k and unbreakable degree-4 ver-
tices arranged in a planar man-
ner without self loops or dupli-
cate edges.

... ...

k edges

Figure 19 A gadget simulat-
ing an unbreakable degree-2 ver-
tex using only breakable degree-
k and unbreakable degree-3 ver-
tices arranged in a planar man-
ner without self loops or dupli-
cate edges.

k - 2 edges

...

Figure 20 A gadget
simulating an unbreakable
degree-2 vertex using only
breakable degree-k and un-
breakable degree-1 vertices
arranged in a planar manner
without self loops or dupli-
cate edges.

Q

P0 P1 P2 P3 P2a-1......

k - 2a edges

...

...

Figure 21 A gadget simu-
lating an unbreakable degree-
(k − 2a) vertex using only
breakable degree-k and degree-
2 vertices arranged in a planar
manner without self loops or
duplicate edges.

Q1 Q2 Q3

P

Figure 22 A gadget simu-
lating an unbreakable degree-
2 vertex using only breakable
degree-3 vertices arranged in
a planar manner without self
loops or duplicate edges.

Figure 23 A gadget simu-
lating an unbreakable degree-
2 vertex using only breakable
degree-4 vertices arranged in
a planar manner without self
loops or duplicate edges.

8 Planar Graph TRVB is polynomial-time solvable without small
vertex degrees

The overall purpose of this section is to show that variants of Planar Graph TRVB which
disallow all small vertex degrees are polynomial-time solvable because the answer is always
“no.” Consider for example the following theorem.

I Theorem 12. If b > 5 for every b ∈ B and u > 5 for every u ∈ U , then Planar Graph
(B, U)-TRVB has no “yes” inputs. As a result, Planar Graph (B, U)-TRVB problem is
polynomial-time solvable.

Proof. The average degree of a vertex in a planar graph must be less than 6, so there are no
planar graphs with all vertices of degree at least 6. Thus, if b > 5 for every b ∈ B and u > 5
for every u ∈ U , then every instance of Planar Graph (B, U)-TRVB is a “no” instance. J

In fact, we will strengthen this theorem below to disallow “yes” instances even when
degree-5 unbreakable vertices are present by using the particular properties of the TRVB
problem. Note that this time, planar graph inputs which satisfy the degree constraints are
possible, but any such graph will still yield a “no” answer to the Tree-Residue Vertex-Breaking
problem.

We describe the proof idea in Section 8.1 with details available in the full version of the
paper.
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Figure 24 A gadget simulating an unbreakable degree-2 vertex using only breakable degree-5
vertices arranged in a planar manner without self loops or duplicate edges.

Figure 25 A degree-10 vertex with seven degree-1 neighbors (shown) and three other neighbors
(not shown). The edges to the degree-1 neighbors form two bundles of size 2 and one bundle of
size 3.

8.1 Proof idea
Consider the hypothetical situation in which we have a solution to the TRVB problem in a
planar graph whose unbreakable vertices each have degree at least 5 and whose breakable
vertices each have degree at least 6. The general idea of the proof is to show that this
situation is impossible by assigning a scoring function (described below) to the possible states
of the graph as vertices are broken. The score of the initial graph can easily be seen to be
zero and assuming the TRVB instance has a solution, the score of the final tree can be shown
to be positive. It is also the case, however, that if we break the vertices in the correct order,
no vertex increases the score when broken, implying a contradiction.

Next, we introduce the scoring mechanism. Consider one vertex in the graph after some
number of vertices have been broken. This vertex has several neighbors, some of which have
degree 1. We can group the edges of this vertex that lead to degree-1 neighbors into “bundles”
seperated by the edges leading to higher degree neighbors. For example, in Figure 25, the
vertex shown has two bundles of size 2 and one bundle of size 3. Each bundle is given a
score according to its size, and the score of the graph is equal to the cumulative score of all
present bundles. In particular, if a bundle has a size of 1, then we assign the bundle a score
of −1, and otherwise we assign the bundle a score of n− 1 where n is the size of the bundle.

As it turns out, under this scoring mechanism, any tree all of whose non-leaves have
degree at least 5 always has a positive score. In fact, it is easy to see that in our TRVB
instance, if breaking some set of breakable vertices S results in a tree, then this degree
constraint applies: the non-leaves are vertices from the original graph and therefore have
degree at least 5. Thus, the score of the original graph is zero (since there are no bundles),
and the score after all the vertices in S are broken is positive.

Next, we define a breaking order for the vertices of S. In short, we will break the
vertices of S starting on the exterior of the graph and moving inward. More formally, we
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will repeatedly do the following step until all vertices in S have been broken. Consider the
external face of the graph at the current stage of the breaking process. Since not every vertex
in S has been broken, the graph is not yet a tree and the current external face is a cycle.
Every cycle in the graph must contain a vertex from S (in order for the final graph to be a
tree), so choose a vertex from S on the current external face and break that vertex next.

Breaking the vertices of S in this order has an interesting effect on the bundles in the
graph: since every vertex from S is on the external face when it is broken, every degree-1
vertex ends up within the external face when it appears. Thus all bundles are within the
external face of the graph at all times.

Consider the effect that breaking one vertex from S with degree d ≥ 6 has on the score of
the graph. Any vertex in S on the external face has exactly two edges which border this face.
The remaining d− 2 edges must all leave the vertex into the interior of the graph. When
the vertex is broken, each of these d− 2 edges becomes a new bundle (since the interior of
the graph never has any bundles). Thus, breaking the vertex creates d− 2 new bundles of
size 1, thereby decreasing the score of the graph by d− 2. On the other hand, the two edges
which were on the external face are now each added to a bundle, thereby increasing the size
of that bundle by one and increasing its score by at most two (in the case that the size was
originally 1). Thus, the increase in the score of the graph due to these two edges is at most
4. In summary, breaking one vertex decreases the graph’s score by d− 2 ≥ 4 and increases
the graph’s score by at most 4. Thus, the total score of the graph does not increase.

Since the score of the graph does not increase with any step of the process, the final
result should have at most the same score as the original graph. This contradicts the fact
that the tree at the end of the process has positive score while the original graph has score
zero. By contradiction, we conclude that S cannot exist, giving us our desired result.

I Theorem 13. If b > 5 for every b ∈ B and u > 4 for every u ∈ U , then Planar Graph
(B, U)-TRVB can be solved in polynomial time.

9 TRVB and the Hypergraph Spanning Tree problem

In the full version of this paper, we demonstrate the connection between the TRVB problem
and the Hypergraph Spanning Tree problem.

In particular, we reduce from (B, U)-TRVB with B ⊆ {1, 2, 3} to a version of the
Hypergraph Spanning Tree problem in which the hypergraphs are restricted to have only
edges with at most 3 endpoints. The Hypergraph Spanning Tree problem in such hypergraphs
is known to be polynomial-time solvable (see [2]), so we can conclude the following:

I Theorem 14. (B, U)-TRVB with B ⊆ {1, 2, 3} is polynomial-time solvable.

We also reduce from Planar ({k}, ∅)-TRVB to a version of the Hypergraph Spanning Tree
problem in which the hypergraphs are restricted to be k-uniform and 2-regular and to have
planar incidence graphs. Applying the fact that Planar ({k}, ∅)-TRVB is NP-hard for any
k ≥ 4, we immediately obtain the following:

I Theorem 15. The Hypergraph Spanning Tree problem is NP-complete in k-uniform 2-
regular hypergraphs for any k ≥ 4, even when the incidence graph of the hypergraph is
planar.

SWAT 2018



32:14 Tree-Residue Vertex-Breaking: a new tool for proving hardness

References
1 Erik D. Demaine and Mikhail Rudoy. Hamiltonicity is hard in thin or polygonal grid graphs,

but easy in thin polygonal grid graphs. arXiv:1706.10046, 2017. https://arxiv.org/abs/
1706.10046.

2 László Lovász. Matroid matching and some applications. J. Comb. Theory, Ser. B,
28(2):208–236, 1980. doi:10.1016/0095-8956(80)90066-0.

3 Christos H. Papadimitriou and Umesh V. Vazirani. On two geometric problems related
to the traveling salesman problem. J. Algorithms, 5(2):231–246, 1984. doi:10.1016/
0196-6774(84)90029-4.

4 Ján Plesník. The np-completeness of the hamiltonian cycle problem in planar digraphs with
degree bound two. Inf. Process. Lett., 8(4):199–201, 1979. doi:10.1016/0020-0190(79)
90023-1.

5 Hans Jürgen Prömel and Angelika Steger. The Steiner tree problem: a tour through graphs,
algorithms, and complexity. Springer Science & Business Media, 2002.

6 Markus W. Schäffter. Drawing graphs on rectangular grids. Discrete Applied Mathematics,
63(1):75–89, 1995. doi:10.1016/0166-218X(94)00020-E.

https://arxiv.org/abs/1706.10046
https://arxiv.org/abs/1706.10046
http://dx.doi.org/10.1016/0095-8956(80)90066-0
http://dx.doi.org/10.1016/0196-6774(84)90029-4
http://dx.doi.org/10.1016/0196-6774(84)90029-4
http://dx.doi.org/10.1016/0020-0190(79)90023-1
http://dx.doi.org/10.1016/0020-0190(79)90023-1
http://dx.doi.org/10.1016/0166-218X(94)00020-E

	Introduction
	Example of how to use TRVB: Hamiltonicity in max-degree-3 square grid graphs
	Problem variants
	Diagram conventions

	Planar {k},{4}-TRVB is NP-hard for any k>=4
	Planar Hamiltonicity in Directed Graphs with all in- and out-degrees 2 is NP-hard
	Reduction to Planar {k},{4}-TRVB for any k>=4

	Planar TRVB and TRVB are NP-complete with high-degree breakable vertices
	Graph TRVB is NP-complete with high-degree breakable vertices
	Planar Graph TRVB is NP-hard with both low-degree vertices and high-degree breakable vertices
	Planar Graph TRVB is polynomial-time solvable without small vertex degrees
	Proof idea

	TRVB and the Hypergraph Spanning Tree problem

