34 research outputs found

    Clinical applications of PD-L1 bioassays for cancer immunotherapy

    Get PDF
    Abstract Programmed death ligand 1 (PD-L1) has emerged as a biomarker that can help to predict responses to immunotherapies targeted against PD-L1 and its receptor (PD-1). Companion tests for evaluating PD-L1 expression as a biomarker of response have been developed for many cancer immunotherapy agents. These assays use a variety of detection platforms at different levels (protein, mRNA), employ diverse biopsy and surgical samples, and have disparate positivity cutoff points and scoring systems, all of which complicate the standardization of clinical decision-making. This review summarizes the current understanding and ongoing investigations regarding PD-L1 expression as a potential biomarker for clinical outcomes of anti-PD-1/PD-L1 immunotherapy

    CD40L-expressing CD4+ T cells prime adipose-derived stromal cells to produce inflammatory chemokines

    No full text
    International audienceThe therapeutic potential of culture-adapted adipose-derived stromal cells (ASCs) is largely related to their production of immunosuppressive factors that are inducible in vitro by priming with inflammatory stimuli, in particular tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ). In vivo, obesity is associated with chronic inflammation of white adipose tissue, including accumulation of neutrophils, infiltration by IFNγ/TNFα-producing immune cells, and ASC dysfunction. In the current study, we identified in obese patients a simultaneous upregulation of CD40Lin the adipose tissue stroma vascular fraction (AT-SVF), correlated with the Th1 gene signature, and an overexpression of CD40 by native ASCs. Moreover, activated CD4+ T cells upregulated CD40 on culture-expanded ASCs and triggered their production of IL-8 in a CD40L-dependent manner, leading to an increased capacity to recruit neutrophils. Finally, activation of ASCs by sCD40L or CD40L-expressing CD4+ T cells relies on both canonical and non-canonical NF-κB pathways, and IL-8 was found to be coregulated with NF-κB family members in AT-SVF. These data identify the CD40-CD40L axis as a priming mechanism of ASCs, able to modulate their cross talk with neutrophils in an inflammatory context, and their functional capacity for therapeutic applications
    corecore