3,482 research outputs found

    Shear viscosity to entropy density ratio in nuclear multifragmentation

    Full text link
    Nuclear multifragmentation in intermediate energy heavy ion collisions has long been associated with liquid-gas phase transition. We calculate the shear viscosity to entropy density ratio eta/s for an equilibrated system of nucleons and fragments produced in multifragmentation within an extended statistical multifragmentation model. The temperature dependence of eta/s exhibits surprisingly similar behavior as that for water. In the coexistence phase of fragments and light particles, the ratio eta/s reaches a minimum of comparable depth as that for water in the vicinity of the critical temperature for liquid-gas phase transition. The effects of freeze-out volume and surface symmetry energy on eta/s in multifragmentation are studied.Comment: 5 pages, 5 figures, to appear in PR

    Parallel Batch-Dynamic Graph Connectivity

    Full text link
    In this paper, we study batch parallel algorithms for the dynamic connectivity problem, a fundamental problem that has received considerable attention in the sequential setting. The most well known sequential algorithm for dynamic connectivity is the elegant level-set algorithm of Holm, de Lichtenberg and Thorup (HDT), which achieves O(log2n)O(\log^2 n) amortized time per edge insertion or deletion, and O(logn/loglogn)O(\log n / \log\log n) time per query. We design a parallel batch-dynamic connectivity algorithm that is work-efficient with respect to the HDT algorithm for small batch sizes, and is asymptotically faster when the average batch size is sufficiently large. Given a sequence of batched updates, where Δ\Delta is the average batch size of all deletions, our algorithm achieves O(lognlog(1+n/Δ))O(\log n \log(1 + n / \Delta)) expected amortized work per edge insertion and deletion and O(log3n)O(\log^3 n) depth w.h.p. Our algorithm answers a batch of kk connectivity queries in O(klog(1+n/k))O(k \log(1 + n/k)) expected work and O(logn)O(\log n) depth w.h.p. To the best of our knowledge, our algorithm is the first parallel batch-dynamic algorithm for connectivity.Comment: This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 201

    Negative Interactions in Irreversible Self-Assembly

    Full text link
    This paper explores the use of negative (i.e., repulsive) interaction the abstract Tile Assembly Model defined by Winfree. Winfree postulated negative interactions to be physically plausible in his Ph.D. thesis, and Reif, Sahu, and Yin explored their power in the context of reversible attachment operations. We explore the power of negative interactions with irreversible attachments, and we achieve two main results. Our first result is an impossibility theorem: after t steps of assembly, Omega(t) tiles will be forever bound to an assembly, unable to detach. Thus negative glue strengths do not afford unlimited power to reuse tiles. Our second result is a positive one: we construct a set of tiles that can simulate a Turing machine with space bound s and time bound t, while ensuring that no intermediate assembly grows larger than O(s), rather than O(s * t) as required by the standard Turing machine simulation with tiles

    Noninteracting Fermions in infinite dimensions

    Full text link
    Usually, we study the statistical behaviours of noninteracting Fermions in finite (mainly two and three) dimensions. For a fixed number of fermions, the average energy per fermion is calculated in two and in three dimensions and it becomes equal to 50 and 60 per cent of the fermi energy respectively. However, in the higher dimensions this percentage increases as the dimensionality increases and in infinite dimensions it becomes 100 per cent. This is an intersting result, at least pedagogically. Which implies all fermions are moving with Fermi momentum. This result is not yet discussed in standard text books of quantum statistics. In this paper, this fact is discussed and explained. I hope, this article will be helpful for graduate students to study the behaviours of free fermions in generalised dimensionality.Comment: To appear in European Journal of Physics (2010

    Quark-Hadron Phase Transitions in Viscous Early Universe

    Get PDF
    Based on hot big bang theory, the cosmological matter is conjectured to undergo QCD phase transition(s) to hadrons, when the universe was about 110μ1-10 \mus old. In the present work, we study the quark-hadron phase transition, by taking into account the effect of the bulk viscosity. We analyze the evolution of the quantities relevant for the physical description of the early universe, namely, the energy density ρ\rho, temperature TT, Hubble parameter HH and scale factor aa before, during and after the phase transition. To study the cosmological dynamics and the time evolution we use both analytical and numerical methods. By assuming that the phase transition may be described by an effective nucleation theory (prompt {\it first-order} phase transition), we also consider the case where the universe evolved through a mixed phase with a small initial supercooling and monotonically growing hadronic bubbles. The numerical estimation of the cosmological parameters, aa and HH for instance, makes it clear that the time evolution varies from phase to phase. As the QCD era turns to be fairly accessible in the high-energy experiments and the lattice QCD simulations, the QCD equation of state is very well defined. In light of this, we introduce a systematic study of the {\it cross-over} quark-hadron phase transition and an estimation for the time evolution of Hubble parameter.Comment: 27 pages, 17 figures, revtex style (To appear in Phys. Rev. D). arXiv admin note: text overlap with arXiv:gr-qc/040404

    How Much do Heavy Quarks Thermalize in a Heavy Ion Collision?

    Full text link
    We investigate the thermalization of charm quarks in high energy heavy ion collisions. To this end, we calculate the diffusion coefficient in the perturbative Quark Gluon Plasma and relate it to collisional energy loss and momentum broadening. We then use these transport properties to formulate a Langevin model for the evolution of the heavy quark spectrum in the hot medium. The model is strictly valid in the non-relativistic limit and for all velocities \gamma v < \alphas^{-1/2} to leading logarithm in T/mDT/m_D. The corresponding Fokker-Planck equation can be solved analytically for a Bjorken expansion and the solution gives a simple estimate for the medium modifications of the heavy quark spectrum as a function of the diffusion coefficient. Finally we solve the Langevin equations numerically in a hydrodynamic simulation of the heavy ion reaction. The results of this simulation are the medium modifications of the charm spectrum RAAR_{AA} and the expected elliptic flow v2(pT)v_2(p_T) as a function of the diffusion coefficient.Comment: 34 pages, 9 figures. Inculdes a detailed comparison with Boltzmann simulation

    Discontinuous percolation transitions in real physical systems

    Full text link
    We study discontinuous percolation transitions (PT) in the diffusion-limited cluster aggregation model of the sol-gel transition as an example of real physical systems, in which the number of aggregation events is regarded as the number of bonds occupied in the system. When particles are Brownian, in which cluster velocity depends on cluster size as vssηv_s \sim s^{\eta} with η=0.5\eta=-0.5, a larger cluster has less probability to collide with other clusters because of its smaller mobility. Thus, the cluster is effectively more suppressed in growth of its size. Then the giant cluster size increases drastically by merging those suppressed clusters near the percolation threshold, exhibiting a discontinuous PT. We also study the tricritical behavior by controlling the parameter η\eta, and the tricritical point is determined by introducing an asymmetric Smoluchowski equation.Comment: 5 pages, 5 figure

    Phase transition from quark-meson coupling hyperonic matter to deconfined quark matter

    Get PDF
    We investigate the possibility and consequences of phase transitions from an equation of state (EOS) describing nucleons and hyperons interacting via mean fields of sigma, omega, and rho mesons in the recently improved quark-meson coupling (QMC) model to an EOS describing a Fermi gas of quarks in an MIT bag. The transition to a mixed phase of baryons and deconfined quarks, and subsequently to a pure deconfined quark phase, is described using the method of Glendenning. The overall EOS for the three phases is calculated for various scenarios and used to calculate stellar solutions using the Tolman-Oppenheimer-Volkoff equations. The results are compared with recent experimental data, and the validity of each case is discussed with consequences for determining the species content of the interior of neutron stars.Comment: 12 pages, 14 figures; minor typos correcte

    Collective pinning of imperfect vortex lattices by material line defects in extreme type-II superconductors

    Full text link
    The critical current density shown by a superconductor at the extreme type-II limit is predicted to follow an inverse square-root power law with external magnetic field if the vortex lattice is weakly pinned by material line defects. It acquires an additional inverse dependence with thickness along the line direction once pinning of the interstitial vortex lines by material point defects is included. Moderate quantitative agreement with the critical current density shown by second-generation wires of high-temperature superconductors in kG magnetic fields is achieved at liquid-nitrogen temperature.Comment: 10 pages, 3 figures, 2 tables. To appear in Physical Review

    BLITZEN: A highly integrated massively parallel machine

    Get PDF
    The architecture and VLSI design of a new massively parallel processing array chip are described. The BLITZEN processing element array chip, which contains 1.1 million transistors, serves as the basis for a highly integrated, miniaturized, high-performance, massively parallel machine that is currently under development. Each processing element has 1K bits of static RAM and performs bit-serial processing with functional elements for arithmetic, logic, and shifting
    corecore