9,661 research outputs found
Cosmological constraints on thermal relic axions and axion-like particles
Cosmological precision data can be used to set very strict constraints on
Axions and Axion-like particles (ALPs) produced thermally in the big bang. We
briefly review the known bounds and propose two new constraints for Axions and
ALPs decaying in the early universe, based upon the concomitant dilution of
baryon and neutrino densities, using WMAP7 and other cosmological data.Comment: 4 pages, 4 figures. To appear in the proceedings of 7th Patras
Workshop on Axions, WIMPs and WISPs, Mykonos, Greece, 26 June - 1 July 2011
and of TAUP 2011, Munich, Germany, 5 - 9 September 201
Three-body structure of low-lying 12Be states
We investigate to what extent a description of 12Be as a three-body system
made of an inert 10Be-core and two neutrons is able to reproduce the
experimental 12Be data. Three-body wave functions are obtained with the
hyperspherical adiabatic expansion method. We study the discrete spectrum of
12Be, the structure of the different states, the predominant transition
strengths, and the continuum energy spectrum after high energy fragmentation on
a light target. Two 0+, one 2+, one 1- and one 0- bound states are found where
the first four are known experimentally whereas the 0- is predicted as an
isomeric state. An effective neutron charge, reproducing the measured B(E1)
transition and the charge rms radius in 11Be, leads to a computed B(E1)
transition strength for 12Be in agreement with the experimental value. For the
E0 and E2 transitions the contributions from core excitations could be more
significant. The experimental 10Be-neutron continuum energy spectrum is also
well reproduced except in the energy region corresponding to the 3/2- resonance
in 11Be where core excitations contribute.Comment: 16 pages, 9 figures. Accepted for publication in Physical Review
Axion cosmology, lattice QCD and the dilute instanton gas
Axions are one of the most attractive dark matter candidates. The evolution
of their number density in the early universe can be determined by calculating
the topological susceptibility of QCD as a function of the
temperature. Lattice QCD provides an ab initio technique to carry out such a
calculation. A full result needs two ingredients: physical quark masses and a
controlled continuum extrapolation from non-vanishing to zero lattice spacings.
We determine in the quenched framework (infinitely large quark
masses) and extrapolate its values to the continuum limit. The results are
compared with the prediction of the dilute instanton gas approximation (DIGA).
A nice agreement is found for the temperature dependence, whereas the overall
normalization of the DIGA result still differs from the non-perturbative
continuum extrapolated lattice results by a factor of order ten. We discuss the
consequences of our findings for the prediction of the amount of axion dark
matter.Comment: 9 pages, 7 figure
Temporal evolution of a circular membrane subject to various boundary conditions
In this paper we illustrate a standard problem of mathematical physics, by exploring the potential of using a computer algebra system in a classroom experiment. Although many textbooks describe the problem and solve its particular examples to variable extent, to the student is always left the task of imagining, after a few tedious calculations, the temporal evolution of the system. The aim of this paper is, using algebraic computation, to give a complete route to the problem of an asymmetrically perturbed circular membrane in viscous media with the usual boundary conditions, including the computer animation of the results
Nondiffractive sonic crystals
We predict theoretically the nondiffractive propagation of sonic waves in
periodic acoustic media (sonic crystals), by expansion into a set of plane
waves (Bloch mode expansion), and by finite difference time domain calculations
of finite beams. We also give analytical evaluations of the parameters for
nondiffractive propagation, as well as the minimum size of the nondiffractively
propagating acoustic beams.Comment: 7 figures, submitted to J. Acoust. Soc. A
Probing the mechanical unzipping of DNA
A study of the micromechanical unzipping of DNA in the framework of the
Peyrard-Bishop-Dauxois model is presented. We introduce a Monte Carlo technique
that allows accurate determination of the dependence of the unzipping forces on
unzipping speed and temperature. Our findings agree quantitatively with
experimental results for homogeneous DNA, and for -phage DNA we
reproduce the recently obtained experimental force-temperature phase diagram.
Finally, we argue that there may be fundamental differences between {\em in
vivo} and {\em in vitro} DNA unzipping
- …