436 research outputs found

    Influence of the absorber dimensions on wavefront shaping based on volumetric optoacoustic feedback

    Full text link
    The recently demonstrated control over light distribution through turbid media based on real-time three-dimensional optoacoustic feedback has offered promising prospects to interferometrically focus light within scattering objects. Nevertheless, the focusing capacity of the feedback-based approach is strongly conditioned by the number of effectively resolvable optical modes (speckles). In this letter, we experimentally tested the light intensity enhancement achieved with optoacoustic feedback measurements from different sizes of absorbing microparticles. The importance of the obtained results is discussed in the context of potential signal enhancement at deep locations within a scattering medium where the effective speckle sizes approach the minimum values dictated by optical diffraction

    High resolution tumor targeting in living mice by means of multispectral optoacoustic tomography

    Get PDF
    BACKGROUND: Tumor targeting is of high clinical and biological relevance, and major efforts have been made to develop molecular imaging technologies for visualization of the disease markers in tissue. Of particular interest is apoptosis which has a profound role within tumor development and has significant effect on cancer malignancy. METHODS: Herein, we report on targeting of phosphatidylserine-exposing cells within live tumor allograft models using a synthetic near infrared zinc(II)-dipicolylamine probe. Visualization of the probe biodistribution is performed with whole body multispectral optoacoustic tomography (MSOT) system and subsequently compared to results attained by planar and tomographic fluorescence imaging systems. RESULTS: Compared to whole body optical visualization methods, MSOT attains remarkably better imaging capacity by delivering high-resolution scans of both disease morphology and molecular function in real time. Enhanced resolution of MSOT clearly showed that the probe mainly localizes in the vessels surrounding the tumor, suggesting that its tumor selectivity is gained by targeting the phosphatidylserine exposed on the surface of tumor vessels. CONCLUSIONS: The current study demonstrates the high potential of MSOT to broadly impact the fields of tumor diagnostics and preclinical drug development

    High-Throughput Platform for Optoacoustic Probing of Genetically Encoded Calcium Ion Indicators

    Get PDF
    Functional optoacoustic (OA) imaging assisted with genetically encoded calcium ion indicators (GECIs) holds promise for imaging large-scale neuronal activity at depths and spatiotemporal resolutions not attainable with existing optical microscopic techniques. However, currently available GECIs optimized for fluorescence (FL) imaging lack sufficient contrast for OA imaging and respond at wavelengths having limited penetration into the mammalian brain. Here we present an imaging platform capable of rapid assessment and cross-validation between OA and FL responses of sensor proteins expressed in Escherichia coli colonies. The screening system features optimized pulsed light excitation combined with ultrasensitive ultrasound detection to mitigate photobleaching while further allowing the dynamic characterization of calcium ion responses with millisecond precision. Targeted probing of up to six individual colonies per second in both calcium-loaded and calcium-unloaded states was possible with the system. The new platform greatly facilitates optimization of absorption-based labels, thus setting the stage for directed evolution of OA GECIs

    Wavelength-dependent optoacoustic imaging probes for NMDA receptor visualisation

    Get PDF
    The cellular localisation and binding specificity of two NMDAR-targeted near-IR imaging probes has been examined by microscopy, followed by exemplification of MSOT to monitor simulated glutamate bursts in cellulo and a preliminary study in mice observing the signal in the brain

    Fast Multispectral Optoacoustic Tomography (MSOT) for Dynamic Imaging of Pharmacokinetics and Biodistribution in Multiple Organs

    Get PDF
    The characterization of pharmacokinetic and biodistribution profiles is an essential step in the development process of new candidate drugs or imaging agents. Simultaneously, the assessment of organ function related to the uptake and clearance of drugs is of great importance. To this end, we demonstrate an imaging platform capable of high-rate characterization of the dynamics of fluorescent agents in multiple organs using multispectral optoacoustic tomography (MSOT). A spatial resolution of approximately 150 µm through mouse cross-sections allowed us to image blood vessels, the kidneys, the liver and the gall bladder. In particular, MSOT was employed to characterize the removal of indocyanine green from the systemic circulation and its time-resolved uptake in the liver and gallbladder. Furthermore, it was possible to track the uptake of a carboxylate dye in separate regions of the kidneys. The results demonstrate the acquisition of agent concentration metrics at rates of 10 samples per second at a single wavelength and 17 s per multispectral sample with 10 signal averages at each of 5 wavelengths. Overall, such imaging performance introduces previously undocumented capabilities of fast, high resolution in vivo imaging of the fate of optical agents for drug discovery and basic biological research

    Snapshot photoacoustic topography through an ergodic relay of optical absorption in vivo

    Get PDF
    Photoacoustic tomography (PAT) has demonstrated versatile biomedical applications, ranging from tracking single cells to monitoring whole-body dynamics of small animals and diagnosing human breast cancer. Currently, PAT has two major implementations: photoacoustic computed tomography (PACT) and photoacoustic microscopy (PAM). PACT uses a multi-element ultrasonic array for parallel detection, which is relatively complex and expensive. In contrast, PAM requires point-by-point scanning with a single-element detector, which has a limited imaging throughput. The trade-off between the system cost and throughput demands a new imaging method. To this end, we have developed photoacoustic topography through an ergodic relay (PATER). PATER can capture a wide-field image with only a single-element ultrasonic detector upon a single laser shot. This protocol describes the detailed procedures for PATER system construction, including component selection, equipment setup and system alignment. A step-by-step guide for in vivo imaging of a mouse brain is provided as an example application. Data acquisition, image reconstruction and troubleshooting procedures are also elaborated. It takes ~130 min to carry out this protocol, including ~60 min for both calibration and snapshot wide-field data acquisition using a laser with a 2-kHz pulse repetition rate. PATER offers low-cost snapshot wide-field imaging of fast dynamics, such as visualizing blood pulse wave propagation and tracking melanoma tumor cell circulation in mice in vivo. We envision that PATER will have wide biomedical applications and anticipate that the compact size of the setup will allow it to be further developed as a wearable device to monitor human vital signs

    Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe

    Get PDF
    Photoacoustic tomography (PAT) of genetically encoded probes allows for imaging of targeted biological processes deep in tissues with high spatial resolution; however, high background signals from blood can limit the achievable detection sensitivity. Here we describe a reversibly switchable nonfluorescent bacterial phytochrome for use in multiscale photoacoustic imaging, BphP1, with the most red-shifted absorption among genetically encoded probes. BphP1 binds a heme-derived biliverdin chromophore and is reversibly photoconvertible between red and near-infrared light-absorption states. We combined single-wavelength PAT with efficient BphP1 photoswitching, which enabled differential imaging with substantially decreased background signals, enhanced detection sensitivity, increased penetration depth and improved spatial resolution. We monitored tumor growth and metastasis with ~100-μm resolution at depths approaching 10 mm using photoacoustic computed tomography, and we imaged individual cancer cells with a suboptical-diffraction resolution of ~140 nm using photoacoustic microscopy. This technology is promising for biomedical studies at several scales

    Topical Application of Activity-based Probes for Visualization of Brain Tumor Tissue

    Get PDF
    Several investigators have shown the utility of systemically delivered optical imaging probes to image tumors in small animal models of cancer. Here we demonstrate an innovative method for imaging tumors and tumor margins during surgery. Specifically, we show that optical imaging probes topically applied to tumors and surrounding normal tissue rapidly differentiate between tissues. In contrast to systemic delivery of optical imaging probes which label tumors uniformly over time, topical probe application results in rapid and robust probe activation that is detectable as early as 5 minutes following application. Importantly, labeling is primarily associated with peri-tumor spaces. This methodology provides a means for rapid visualization of tumor and potentially infiltrating tumor cells and has potential applications for directed surgical excision of tumor tissues. Furthermore, this technology could find use in surgical resections for any tumors having differential regulation of cysteine cathepsin activity

    A practical guide to photoacoustic tomography in the life sciences

    Get PDF
    The life sciences can benefit greatly from imaging technologies that connect microscopic discoveries with macroscopic observations. One technology uniquely positioned to provide such benefits is photoacoustic tomography (PAT), a sensitive modality for imaging optical absorption contrast over a range of spatial scales at high speed. In PAT, endogenous contrast reveals a tissue's anatomical, functional, metabolic, and histologic properties, and exogenous contrast provides molecular and cellular specificity. The spatial scale of PAT covers organelles, cells, tissues, organs, and small animals. Consequently, PAT is complementary to other imaging modalities in contrast mechanism, penetration, spatial resolution, and temporal resolution. We review the fundamentals of PAT and provide practical guidelines for matching PAT systems with research needs. We also summarize the most promising biomedical applications of PAT, discuss related challenges, and envision PAT's potential to lead to further breakthroughs
    • …
    corecore