2,106 research outputs found
A simplified treatment of SiB's land surface albedo parameterization
The earlier presented surface albedo parameterization is simplified by assuming that the reflectance of direct solar radiation is a simple function of solar zenith angle. The function chosen contains three parameters that vary with vegetation type, greenness, and leaf area index. Tables of parameter values are presented. Using these tables, SiB's (Simple Biosphere model) absorbances of direct solar radiation can be reproduced with an average relative error of less than 0.5 percent. Finally, the direct reflectance function is integrated over zenith angle to produce an equation for the surface reflectance of diffuse radiation
Estimation of Farmland Values for Assessment and Property Taxation in North Dakota
Land Economics/Use,
Did U.S. Agricultural Policy Lock Farmers into Wheat? The Capitalization of Farm Policies into Land Prices in the U.S and Canada
Performance Evaluation of FMOSSIM, a Concurrent Switch-Level Fault Simulator
This paper presents measurements obtained while performing fault simulations of MOS circuits modeled at the switch level. In this model the transistor structure of the circuit is represented explicitly as a network of charge storage nodes connected by bidirectional transistor switches. Since the logic model of the simulator closely matches the actual structure of MOS circuits, such faults as stuck-open and closed transistors as well as short and open-circuited wires can be simulated. By using concurrent simulation techniques, we obtain a performance level comparable to fault simulators using logic gate models. Our measurements indicate that fault simulation times grow as the product of the circuit size and number of patterns, assuming the number of faults to be simulated is proportional to the circuit size. However, fault simulation times depend strongly on the rate at which the test patterns detect the faults
Concurrent fault simulation of MOS digital circuits
The concurrent fault simulation technique is widely used to analyse the behavior of digital circuits
in the presence of faults. We show how this technique can be applied to metal-oxide-semiconductor
(MOS) digital circuits when modeled at the switch-level as a set of charge storage nodes connected by
bidirectional transistor switches. The algorithm we present is capable of analysing the behavior of a wide
variety of MOS circuit failures, such as stuck-at-zero or stuck-at-one nodes, stuck-open or stuck-closed
transistors, or resistive opens or shorts. We have implemented a fault simulator FMOSSIM based on
this algorithm. The capabilities and the peformance of this program demonstrate the advantages of
combining switch-level and concurrent simulation techniques
INTEREST MARGIN AND AGRICULTURAL BANK PERFORMANCE: A PRELIMINARY ANALYSIS
Agricultural Finance,
AGCM Biases in Evaporation Regime: Impacts on Soil Moisture Memory and Land-Atmosphere Feedback
Because precipitation and net radiation in an atmospheric general circulation model (AGCM) are typically biased relative to observations, the simulated evaporative regime of a region may be biased, with consequent negative effects on the AGCM s ability to translate an initialized soil moisture anomaly into an improved seasonal prediction. These potential problems are investigated through extensive offline analyses with the Mosaic land surface model (LSM). We first forced the LSM globally with a 15-year observations-based dataset. We then repeated the simulation after imposing a representative set of GCM climate biases onto the forcings - the observational forcings were scaled so that their mean seasonal cycles matched those simulated by the NSIPP-1 (NASA Global Modeling and Assimilation Office) AGCM over the same period-The AGCM s climate biases do indeed lead to significant biases in evaporative regime in certain regions, with the expected impacts on soil moisture memory timescales. Furthermore, the offline simulations suggest that the biased forcing in the AGCM should contribute to overestimated feedback in certain parts of North America - parts already identified in previous studies as having excessive feedback. The present study thus supports the notion that the reduction of climate biases in the AGCM will lead to more appropriate translations of soil moisture initialization into seasonal prediction skill
Phase Locking of the Boreal Summer Atmospheric Response to Dry Land Surface Anomalies in the Northern Hemisphere
Past modeling simulations, supported by observational composites, indicate that during boreal summer, dry soil moisture anomalies in very different locations within the United States continental interior tend to induce the same upper-tropospheric circulation pattern: a high anomaly forms over west-central North America and a low anomaly forms to the east. The present study investigates the causes of this apparent phase locking of the upper-level circulation response and extends the investigation to other land regions in the Northern Hemisphere. The phase locking over North America is found to be induced by zonal asymmetries in the local basic state originating from North American orography. Specifically, orography-induced zonal variations of air temperature, those in the lower troposphere in particular, and surface pressure play a dominant role in placing the soil moisture-forced negative Rossby wave source (dominated by upper-level divergence anomalies) over the eastern leeside of the Western Cordillera, which subsequently produces an upper-level high anomaly over west-central North America, with the downstream anomalous circulation responses phase-locked by continuity. The zonal variations of the local climatological atmospheric circulation, manifested as a climatological high over central North America, help shape the spatial pattern of the upper-level circulation responses. Considering the rest of the Northern Hemisphere, the northern Middle East exhibits similar phase locking, also induced by local orography. The Middle Eastern phase locking, however, is not as pronounced as that over North America; North America is where soil moisture anomalies have the greatest impact on the upper-tropospheric circulation
Identifying and Evaluating the Relationships that Control a Land Surface Model's Hydrological Behavior
The inherent soil moisture-evaporation relationships used in today 's land surface models (LSMs) arguably reflect a lot of guesswork given the lack of contemporaneous evaporation and soil moisture observations at the spatial scales represented by regional and global models. The inherent soil moisture-runoff relationships used in the LSMs are also of uncertain accuracy. Evaluating these relationships is difficult but crucial given that they have a major impact on how the land component contributes to hydrological and meteorological variability within the climate system. The relationships, it turns out, can be examined efficiently and effectively with a simple water balance model framework. The simple water balance model, driven with multi-decadal observations covering the conterminous United States, shows how different prescribed relationships lead to different manifestations of hydrological variability, some of which can be compared directly to observations. Through the testing of a wide suite of relationships, the simple model provides estimates for the underlying relationships that operate in nature and that should be operating in LSMs. We examine the relationships currently used in a number of different LSMs in the context of the simple water balance model results and make recommendations for potential first-order improvements to these LSMs
- …
