2,464 research outputs found
Optimization of -Layer Systems for Josephson Junctions from a Microstructure Point of View
-layer systems are frequently used for Josephson junction-based
superconducting devices. Although much work has been devoted to the
optimization of the superconducting properties of these devices, systematic
studies on influence of deposition conditions combined with structural analyses
on the nanoscale are rare up to now. We have focused on the optimization of the
structural properties of -layer systems deposited on Si(111)
substrates with a particular focus on the thickness homogeneity of the
-tunnel barrier. A standard high-vacuum electron-beam deposition system
was used and the effect of substrate pretreatment, different Al-deposition
temperatures and Al-deposition rates was studied. Transmission electron
microscopy was applied to analyze the structural properties of the
-layer systems to determine the thickness homogeneity of the
layer, grain size distribution in the Al layers, Al-grain boundary
types and the morphology of the interface. We show that the
structural properties of the lower Al layer are decisive for the structural
quality of the whole -layer system. Optimum conditions yield an
epitaxial Al(111) layer on a Si(111) substrate with an Al-layer thickness
variation of only 1.6 nm over more than 10 and large lateral grain
sizes up to 1 . Thickness fluctuations of the -tunnel barrier are
minimized on such an Al layer which is essential for the homogeneity of the
tunnel current. Systematic variation of the Al-deposition rate and deposition
temperature allows to develop an understanding of the growth mechanisms
Correlating the nanostructure of Al-oxide with deposition conditions and dielectric contributions of two-level systems in perspective of superconducting quantum circuits
This work is concerned with Al/Al-oxide(AlO)/Al-layer systems which are
important for Josephson-junction-based superconducting devices such as quantum
bits. The device performance is limited by noise, which has been to a large
degree assigned to the presence and properties of two-level tunneling systems
in the amorphous AlO tunnel barrier. The study is focused on the
correlation of the fabrication conditions, nanostructural and nanochemical
properties and the occurrence of two-level tunneling systems with particular
emphasis on the AlO-layer. Electron-beam evaporation with two different
processes and sputter deposition were used for structure fabrication, and the
effect of illumination by ultraviolet light during Al-oxide formation is
elucidated. Characterization was performed by analytical transmission electron
microscopy and low-temperature dielectric measurements. We show that the
fabrication conditions have a strong impact on the nanostructural and
nanochemical properties of the layer systems and the properties of two-level
tunneling systems. Based on the understanding of the observed structural
characteristics, routes are derived towards the fabrication of
Al/AlO/Al-layers systems with improved properties.Comment: 28 pages, 4 figure
Antiferromagnetic phase of the gapless semiconductor V3Al
Discovering new antiferromagnetic compounds is at the forefront of developing
future spintronic devices without fringing magnetic fields. The
antiferromagnetic gapless semiconducting D03 phase of V3Al was successfully
synthesized via arc-melting and annealing. The antiferromagnetic properties
were established through synchrotron measurements of the atom-specific magnetic
moments, where the magnetic dichroism reveals large and oppositely-oriented
moments on individual V atoms. Density functional theory calculations confirmed
the stability of a type G antiferromagnetism involving only two-third of the V
atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray
diffraction and transport measurements also support the antiferromagnetism.
This archetypal gapless semiconductor may be considered as a cornerstone for
future spintronic devices containing antiferromagnetic elements.Comment: Accepted to Physics Review B on 02/23/1
Clinical exercise testing in children and adolescents with cystic fibrosis.
ArticleThis is the author version of an article published in Pediatric Physical Therapy, 2009, Vol. 21, Iss. 3, pp. 275-281. The final published version is available via: http://dx.doi.org/10.1097/PEP.0b013e3181b15445PURPOSE:
To review the most common field and laboratory exercise tests available for children and adolescents with cystic fibrosis (CF).
METHODS:
Relevant studies for this review were identified by electronic search of Medline and PubMed databases between the years 1958 and 2008. The bibliographies of all accessed publications were also searched. Key descriptors were cystic fibrosis, exercise testing, aerobic fitness, children, and adolescents.
RESULTS:
Five field tests were selected for presentation, including discussion of their strengths and weaknesses. Laboratory tests measuring aerobic and anaerobic responses to exercise in children with CF were also selected for presentation and discussed along with a summary of safety considerations for exercise testing of children with CF.
CONCLUSION:
Exercise testing is regarded an important prognostic tool in CF care. However, despite its beneficial effects, clinical exercise testing seems underused. Clinicians and their staff should encourage patients with CF to be physically active and recommend exercise testing annually
Exercise training in children and adolescents with cystic fibrosis: theory into practice.
Journal ArticleCopyright © 2010 Craig A. Williams et al.Physical activity and exercise training play an important role in the clinical management of patients with cystic fibrosis (CF). Exercise training is more common and recognized as an essential part of rehabilitation programmes and overall CF care. Regular exercise training is associated with improved aerobic and anaerobic capacity, higher pulmonary function, and enhanced airway mucus clearance. Furthermore, patients with higher aerobic fitness have an improved survival. Aerobic and anaerobic training may have different effects, while the combination of both have been reported to be beneficial in CF. However, exercise training remains underutilised and not always incorporated into routine CF management. We provide an update on aerobic and anaerobic responses to exercise and general training recommendations in children and adolescents with CF. We propose that an active lifestyle and exercise training are an efficacious part of regular CF patient management
Pseudogap in the microwave response of YBa_2Cu_3O_{7-x}
The in-plane and out-of-plane surface impedance and microwave conductivity
components of one and the same YBa_2Cu_3O_{7-x} (0.07\le x\le 0.47) single
crystal are determined in the wide ranges of temperature T and carrier
concentration p in CuO_2 planes. The following features of the superfluid
density n_s(T,p)\propto\lambda_{ab}^{-2}(T,p) are observed at T<Tc/2 and
0.078\le p\le 0.16: (i) n_s(0,p) depends linearly on p, (ii) the derivative
|dn_s(T,p)/dT|_{T\to 0} depends on p slightly in the optimally and moderately
doped regions (0.10<p\le 0.16); however, it rapidly increases with p further
lowering and (iii) the latter finding is accompanied by the linear
low-temperature dependence \Delta n_s(T)\propto(-T) changing to \Delta
n_s(T)\propto(-\sqrt{T}). For optimum oxygen content the temperature dependence
of the normalized imaginary part of the c-axis conductivity
\lambda_c^2(0)/\lambda_c^2(T) is found to be strikingly similar to that of
\lambda_{ab}^2(0)/\lambda_{ab}^2(T) and becomes more convex with p lowering.
\lambda_c^{-2}(0,p) values are roughly proportional to the normal state
conductivities \sigma_c(T_c,p) along the c-axis. All these properties can be
treated in the framework of d-density wave order of pseudogap.Comment: 7 pages, 9 figures, presented at EUCAS 2003 (September 14-18),
submitted to SUS
Disorder and chain superconductivity in YBa_2Cu_3O_{7-\delta}
The effects of chain disorder on superconductivity in YBa_2Cu_3O_{7-\delta}
are discussed within the context of a proximity model. Chain disorder causes
both pair-breaking and localization. The hybridization of chain and plane
wavefunctions reduces the importance of localization, so that the transport
anisotropy remains large in the presence of a finite fraction of
oxygen vacancies. Penetration depth and specific heat measurements probe the
pair-breaking effects of chain disorder, and are discussed in detail at the
level of the self-consistent T-matrix approximation. Quantitative agreement
with these experiments is found when chain disorder is present.Comment: 4 pages, 2 figures, submitted to PRB rapid communication
Role of anisotropic impurity scattering in anisotropic superconductors
A theory of nonmagnetic impurities in an anisotropic superconductor including
the effect of anisotropic (momentum-dependent) impurity scattering is given. It
is shown that for a strongly anisotropic scattering the reduction of the
pair-breaking effect of the impurities is large. For a significant overlap
between the anisotropy functions of the scattering potential and that of the
pair potential and for a large amount of anisotropic scattering rate in
impurity potential the superconductivity becomes robust vis a vis impurity
concentration. The implications of our result for YBCO high-temperature
superconductor are discussed.Comment: 14 pages, RevTeX, 5 PostScript figures, to be published in Phys. Rev.
B (December 1, 1996
Theory of the c-Axis Penetration Depth in the Cuprates
Recent measurements of the London penetration depth tensor in the cuprates
find a weak temperature dependence along the c-direction which is seemingly
inconsistent with evidence for d-wave pairing deduced from in-plane
measurements. We demonstrate in this paper that these disparate results are not
in contradiction, but can be explained within a theory based on incoherent
quasiparticle hopping between the CuO2 layers. By relating the calculated
temperature dependence of the penetration depth \lambda_c(T) to the c-axis
resistivity, we show how the measured ratio \lambda_c^2(0) / \lambda_c^2(T) can
provide insight into the behavior of c-axis transport below Tc and the related
issue of ``confinement.''Comment: 4 pages, REVTEX with psfig, 3 PostScript figures included in
compressed for
- …
