5,702 research outputs found

    Duration judgements in patients with schizophrenia

    Get PDF
    Background. The ability to encode time cues underlies many cognitive processes. In the light of schizophrenic patients' compromised cognitive abilities in a variety of domains, it is noteworthy that there are numerous reports of these patients displaying impaired timing abilities. However, the timing intervals that patients have been evaluated on in prior studies vary considerably in magnitude (e.g. 1 s, 1 min, 1 h etc.). Method. In order to obviate differences in abilities in chronometric counting and place minimal demands on cognitive processing, we chose tasks that involve making judgements about brief durations of time (<1 s). Results. On a temporal generalization task, patients were less accurate than controls at recognizing a standard duration. The performance of patients was also significantly different from controls on a temporal bisection task, in which participants categorized durations as short or long. Although time estimation may be closely intertwined with working memory, patients' working memory as measured by the digit span task did not correlate significantly with their performance on the duration judgement tasks. Moreover, lowered intelligence scores could not completely account for the findings. Conclusions. We take these results to suggest that patients with schizophrenia are less accurate at estimating brief time periods. These deficits may reflect dysfunction of biopsychological timing processes

    African vegetable diversity in the limelight: project activities by ProNIVA.

    Get PDF
    Poster presented at Botanical Congress. Hamburg (Germany), 3-7 Sep 200

    Numerically improved computational scheme for the optical conductivity tensor in layered systems

    Full text link
    The contour integration technique applied to calculate the optical conductivity tensor at finite temperatures in the case of layered systems within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker band structure method is improved from the computational point of view by applying the Gauss-Konrod quadrature for the integrals along the different parts of the contour and by designing a cumulative special points scheme for two-dimensional Brillouin zone integrals corresponding to cubic systems.Comment: 17 pages, LaTeX + 4 figures (Encapsulated PostScript), submitted to J. Phys.: Condensed Matter (19 Sept. 2000

    Analytic frameworks for assessing dialogic argumentation in online learning environments

    Get PDF
    Over the last decade, researchers have developed sophisticated online learning environments to support students engaging in argumentation. This review first considers the range of functionalities incorporated within these online environments. The review then presents five categories of analytic frameworks focusing on (1) formal argumentation structure, (2) normative quality, (3) nature and function of contributions within the dialog, (4) epistemic nature of reasoning, and (5) patterns and trajectories of participant interaction. Example analytic frameworks from each category are presented in detail rich enough to illustrate their nature and structure. This rich detail is intended to facilitate researchers’ identification of possible frameworks to draw upon in developing or adopting analytic methods for their own work. Each framework is applied to a shared segment of student dialog to facilitate this illustration and comparison process. Synthetic discussions of each category consider the frameworks in light of the underlying theoretical perspectives on argumentation, pedagogical goals, and online environmental structures. Ultimately the review underscores the diversity of perspectives represented in this research, the importance of clearly specifying theoretical and environmental commitments throughout the process of developing or adopting an analytic framework, and the role of analytic frameworks in the future development of online learning environments for argumentation

    Embedded Stellar Clusters in the W3/W4/W5 Molecular Cloud Complex

    Get PDF
    We analyze the embedded stellar content in the vicinity of the W3/W4/W5 HII regions using the FCRAO Outer Galaxy 12CO(J=1-0) Survey, the IRAS Point Source Catalog, published radio continuum surveys, and new near-infrared and molecular line observations. Thirty-four IRAS Point Sources are identified that have far-infrared colors characteristic of embedded star forming regions, and we have obtained K' mosaics and 13CO(J=1-0) maps for 32 of them. Ten of the IRAS sources are associated with an OB star and 19 with a stellar cluster, although three OB stars are not identified with a cluster. Half of the embedded stellar population identified in the K' images is found in just the 5 richest clusters, and 61% is contained in IRAS sources associated with an embedded OB star. Thus rich clusters around OB stars contribute substantially to the stellar population currently forming in the W3/W4/W5 region. Approximately 39% of the cluster population is embedded in small clouds with an average mass of ~130 Mo that are located as far as 100 pc from the W3/W4/W5 cloud complex. We speculate that these small clouds are fragments of a cloud complex dispersed by previous episodes of massive star formation. Finally, we find that 4 of the 5 known embedded massive star forming sites in the W3 molecular cloud are found along the interface with the W4 HII region despite the fact that most of the molecular mass is contained in the interior regions of the cloud. These observations are consistent with the classical notion that the W4 HII region has triggered massive star formation along the eastern edge of the W3 molecular cloud.Comment: to appear in ApJS, see http://astro.caltech.edu/~jmc/papers/w

    Surveyor batteries Final engineering report

    Get PDF
    Design and performance of Surveyor spacecraft silver-zinc main batter

    The Circumstellar Disk of HD 141569 Imaged with NICMOS

    Get PDF
    Coronagraphic imaging with the Near Infrared Camera and Multi Object Spectrometer on the Hubble Space Telescope reveals a large, ~400 AU (4'') radius, circumstellar disk around the Herbig Ae/Be star HD 141569. A reflected light image at 1.1 micron shows the disk oriented at a position angle of 356 +/- 5 deg and inclined to our line of sight by 51 +/- 3 deg; the intrinsic scattering function of the dust in the disk makes the side inclined toward us, the eastern side, brighter. The disk flux density peaks 185 AU (1.''85) from the star and falls off to both larger and smaller radii. A region of depleted material, or a gap, in the disk is centered 250 AU from the star. The dynamical effect of one or more planets may be necessary to explain this morphology.Comment: 4 pages, LaTeX with emulateapj.sty and epsfig.sty, 4 postscript figures, Accepted to ApJ Letter

    The Carnegie Astrometric Planet Search Program

    Full text link
    We are undertaking an astrometric search for gas giant planets and brown dwarfs orbiting nearby low mass dwarf stars with the 2.5-m du Pont telescope at the Las Campanas Observatory in Chile. We have built two specialized astrometric cameras, the Carnegie Astrometric Planet Search Cameras (CAPSCam-S and CAPSCam-N), using two Teledyne Hawaii-2RG HyViSI arrays, with the cameras' design having been optimized for high accuracy astrometry of M dwarf stars. We describe two independent CAPSCam data reduction approaches and present a detailed analysis of the observations to date of one of our target stars, NLTT 48256. Observations of NLTT 48256 taken since July 2007 with CAPSCam-S imply that astrometric accuracies of around 0.3 milliarcsec per hour are achievable, sufficient to detect a Jupiter-mass companion orbiting 1 AU from a late M dwarf 10 pc away with a signal-to-noise ratio of about 4. We plan to follow about 100 nearby (primarily within about 10 pc) low mass stars, principally late M, L, and T dwarfs, for 10 years or more, in order to detect very low mass companions with orbital periods long enough to permit the existence of habitable, Earth-like planets on shorter-period orbits. These stars are generally too faint and red to be included in ground-based Doppler planet surveys, which are often optimized for FGK dwarfs. The smaller masses of late M dwarfs also yield correspondingly larger astrometric signals for a given mass planet. Our search will help to determine whether gas giant planets form primarily by core accretion or by disk instability around late M dwarf stars.Comment: 48 pages, 9 figures. in press, Publ. Astron. Soc. Pacifi

    Supersymmetry, homology with twisted coefficients and n-dimensional knots

    Full text link
    Let nn be any natural number. Let KK be any nn-dimensional knot in Sn+2S^{n+2}. We define a supersymmetric quantum system for KK with the following properties. We firstly construct a set of functional spaces (spaces of fermionic \{resp. bosonic\} states) and a set of operators (supersymmetric infinitesimal transformations) in an explicit way. Thus we obtain a set of the Witten indexes for KK. Our Witten indexes are topological invariants for nn-dimensional knots. Our Witten indexes are not zero in general. If KK is equivalent to the trivial knot, all of our Witten indexes are zero. Our Witten indexes restrict the Alexander polynomials of nn-knots. If one of our Witten indexes for an nn-knot KK is nonzero, then one of the Alexander polynomials of KK is nontrivial. Our Witten indexes are connected with homology with twisted coefficients. Roughly speaking, our Witten indexes have path integral representation by using a usual manner of supersymmetric theory.Comment: 10pages, no figure
    corecore