5,476 research outputs found
Nonequilibrium Temperature and Thermometry in Heat-Conducting Phi-4 Models
We analyze temperature and thermometry for simple nonequilibrium
heat-conducting models. We show in detail, for both two- and three-dimensional
systems, that the ideal gas thermometer corresponds to the concept of a local
instantaneous mechanical kinetic temperature. For the Phi-4 models investigated
here the mechanical temperature closely approximates the local thermodynamic
equilibrium temperature. There is a significant difference between kinetic
temperature and the nonlocal configurational temperature. Neither obeys the
predictions of extended irreversible thermodynamics. Overall, we find that
kinetic temperature, as modeled and imposed by the Nos\'e-Hoover thermostats
developed in 1984, provides the simplest means for simulating, analyzing, and
understanding nonequilibrium heat flows.Comment: 20 pages with six figures, revised following review at Physical
Review
Classical reflections on the deficit
Deficit financing ; Debt management ; Crowding out (Economics) ; Interest rates
Well-Posed Two-Temperature Constitutive Equations for Stable Dense Fluid Shockwaves using Molecular Dynamics and Generalizations of Navier-Stokes-Fourier Continuum Mechanics
Guided by molecular dynamics simulations, we generalize the
Navier-Stokes-Fourier constitutive equations and the continuum motion equations
to include both transverse and longitudinal temperatures. To do so we partition
the contributions of the heat transfer, the work done, and the heat flux vector
between the longitudinal and transverse temperatures. With shockwave boundary
conditions time-dependent solutions of these equations converge to give
stationary shockwave profiles. The profiles include anisotropic temperature and
can be fitted to molecular dynamics results, demonstrating the utility and
simplicity of a two-temperature description of far-from-equilibrium states.Comment: 19 pages with 10 figures, revised following review at Physical Review
E and with additional figure/discussion, for presentation at the
International Summer School and Conference "Advanced Problems in Mechanics"
[Saint Petersburg, Russia] 1-5 July 2010
An automatic lightning detection and photographic system
Conventional 35-mm camera is activated by an electronic signal every time lightning strikes in general vicinity. Electronic circuit detects lightning by means of antenna which picks up atmospheric radio disturbances. Camera is equipped with fish-eye lense, automatic shutter advance, and small 24-hour clock to indicate time when exposures are made
Mathematical Economics Comes to America: Charles S. Peirce's Engagement with Cournot's Recherches sur les Principes Mathematiques de la Theorie des Richesses
Although Cournot's mathematical economics was generally neglected until the mid- 1870s, he was taken up and carefully studied by the Scientific Club of Cambridge, Massachusetts even before his "discovery" by Walras and Jevons. The episode is reconstructed from fragmentary manuscripts of the pragmatist philosopher Charles S. Peirce, a sophisticated mathematician. Peirce provides a subtle interpretation and anticipates Bertrand's criticisms
Configurational temperature control for atomic and molecular systems
A new configurational temperature thermostat suitable for molecules with holonomic constraints is derived. This thermostat has a simple set of motion equations, can generate the canonical ensemble in both position and momentum space, acts homogeneously through the spatial
coordinates, and does not intrinsically violate the constraints. Our new configurational thermostat is
closely related to the kinetic temperature Nosé-Hoover thermostat with feedback coupled to the position variables via a term proportional to the net molecular force. We validate the thermostat by comparing equilibrium static and dynamic quantities for a fluid of n-decane molecules under
configurational and kinetic temperature control. Practical aspects concerning the implementation of the new thermostat in a molecular dynamics code and the potential applications are discussed
Steady-state conduction in self-similar billiards
The self-similar Lorentz billiard channel is a spatially extended
deterministic dynamical system which consists of an infinite one-dimensional
sequence of cells whose sizes increase monotonically according to their
indices. This special geometry induces a nonequilibrium stationary state with
particles flowing steadily from the small to the large scales. The
corresponding invariant measure has fractal properties reflected by the
phase-space contraction rate of the dynamics restricted to a single cell with
appropriate boundary conditions. In the near-equilibrium limit, we find
numerical agreement between this quantity and the entropy production rate as
specified by thermodynamics
Brownian Motors driven by Particle Exchange
We extend the Langevin dynamics so that particles can be exchanged with a
particle reservoir. We show that grand canonical ensembles are realized at
equilibrium and derive the relations of thermodynamics for processes between
equilibrium states. As an application of the proposed evolution rule, we devise
a simple model of Brownian motors driven by particle exchange. KEYWORDS:
Langevin Dynamics, Thermodynamics, Open SystemsComment: 5 pages, late
Nonequilibrium stationary states with ratchet effect
An ensemble of particles in thermal equilibrium at temperature , modeled
by Nos\`e-Hoover dynamics, moves on a triangular lattice of oriented semi-disk
elastic scatterers. Despite the scatterer asymmetry a directed transport is
clearly ruled out by the second law of thermodynamics. Introduction of a
polarized zero mean monochromatic field creates a directed stationary flow with
nontrivial dependence on temperature and field parameters. We give a
theoretical estimate of directed current induced by a microwave field in an
antidot superlattice in semiconductor heterostructures.Comment: 4 pages, 5 figures (small changes added
- …