7,291 research outputs found
Randomized Algorithms for the Loop Cutset Problem
We show how to find a minimum weight loop cutset in a Bayesian network with
high probability. Finding such a loop cutset is the first step in the method of
conditioning for inference. Our randomized algorithm for finding a loop cutset
outputs a minimum loop cutset after O(c 6^k kn) steps with probability at least
1 - (1 - 1/(6^k))^c6^k, where c > 1 is a constant specified by the user, k is
the minimal size of a minimum weight loop cutset, and n is the number of
vertices. We also show empirically that a variant of this algorithm often finds
a loop cutset that is closer to the minimum weight loop cutset than the ones
found by the best deterministic algorithms known
Closed classes of functions, generalized constraints and clusters
Classes of functions of several variables on arbitrary non-empty domains that
are closed under permutation of variables and addition of dummy variables are
characterized in terms of generalized constraints, and hereby Hellerstein's
Galois theory of functions and generalized constraints is extended to infinite
domains. Furthermore, classes of operations on arbitrary non-empty domains that
are closed under permutation of variables, addition of dummy variables and
composition are characterized in terms of clusters, and a Galois connection is
established between operations and clusters.Comment: 21 page
Flash of photons from the early stage of heavy-ion collisions
The dynamics of partonic cascades may be an important aspect for particle
production in relativistic collisions of nuclei at CERN SPS and BNL RHIC
energies. Within the Parton-Cascade Model, we estimate the production of single
photons from such cascades due to scattering of quarks and gluons q g -> q
gamma, quark-antiquark annihilation q qbar -> g gamma, or gamma gamma, and from
electromagnetic brems-strahlung of quarks q -> q gamma. We find that the latter
QED branching process plays the dominant role for photon production, similarly
as the QCD branchings q -> q g and g -> g g play a crucial role for parton
multiplication. We conclude therefore that photons accompanying the parton
cascade evolution during the early stage of heavy-ion collisions shed light on
the formation of a partonic plasma.Comment: 4 pages including 3 postscript figure
Secondary phi meson peak as an indicator of QCD phase transition in ultrarelativistic heavy ion collisions
In a previous paper, we have shown that a double phi peak structure appears
in the dilepton invariant mass spectrum if a first order QCD phase transition
occurs in ultrarelativistic heavy ion collisions. Furthermore, the transition
temperature can be determined from the transverse momentum distribution of the
low mass phi peak. In this work, we extend the study to the case that a smooth
crossover occurs in the quark-gluon plasma to the hadronic matter transition.
We find that the double phi peak structure still exists in the dilepton
spectrum and thus remains a viable signal for the formation of the quark-gluon
plasma in ultrarelativistic heavy ion collisions.Comment: 8 pages, 9 uuencoded postscript figures included, Latex, LBL-3572
Effect of baryon density on parton production, chemical equilibration and thermal photon emission from quark gluon plasma
The effect of baryon density on parton production processes of
and is studied
using full phase space distribution function and also with inclusion of quantum
statistics i.e. Pauli blocking and Bose enhancement factors, in the case of
both saturated and unsaturated quark gluon plasma. The rate for the process is found to be much less as compared to the most
commonly used factorized result obtained on the basis of classical
approximation. This discrepancy, which is found both at zero as well as at
finite baryon densities, however, is not due to the lack of quantum statistics
in the classical approximation, rather due to the use of Fermi-Dirac and
Bose-Einstein distribution functions for partons instead of Boltzmann
distribution which is appropriate under such approximation. Interestingly, the
rates of parton production are found to be insensitive to the baryo-chemical
potential particularly when the plasma is unsaturated although the process of
chemical equilibration strongly depends on it. The thermal photon yields, have
been calculated specifically from unsaturated plasma at finite baryon density.
The exact results obtained numerically are found to be in close agreement with
the analytic expression derived using factorized distribution functions
appropriate for unsaturated plasma. Further, it is shown that in the case of
unsaturated plasma, the thermal photon production is enhanced with increasing
baryon density both at fixed temperature and fixed energy density of the quark
gluon plasma.Comment: Latex, 24 pages, 6 postscript figures. Submitted to Phys. Rev.
Soft Electromagnetic Radiations From Equilibrating Quark-Gluon Plasma
We evaluate the bremsstrahlung production of low mass dileptons and soft
photons from equilibrating and transversely expanding quark gluon plasma which
may be created in the wake of relativistic heavy ion collisions. We use initial
conditions obtained from the self screened parton cascade model. We consider a
boost invariant longitudinal and cylindrically symmetric transverse expansion
of the parton plasma and find that for low mass dileptons ( GeV)
and soft photons ( GeV), the bremsstrahlung contribution is
rather large compared to annihilation process at both RHIC and LHC energies. We
also find an increase by a factor of 15-20 in the low mass dileptons and soft
photons yield as one goes from RHIC to LHC energies.Comment: 8 pages, including 7 figures To appear in Phys. Rev.
Abrupt changes in alpha decay systematics as a manifestation of collective nuclear modes
An abrupt change in decay systematics around the N=126 neutron shell
closure is discussed. It is explained as a sudden hindrance of the clustering
of the nucleons that eventually form the particle. This is because the
clustering induced by the pairing mode acting upon the four nucleons is
inhibited if the configuration space does not allow a proper manifestation of
the pairing collectivity.Comment: 6 pages, 3 figures, submitted to Phys. Rev. C, a few new references
adde
Generalized Satisfiability Problems via Operator Assignments
Schaefer introduced a framework for generalized satisfiability problems on
the Boolean domain and characterized the computational complexity of such
problems. We investigate an algebraization of Schaefer's framework in which the
Fourier transform is used to represent constraints by multilinear polynomials
in a unique way. The polynomial representation of constraints gives rise to a
relaxation of the notion of satisfiability in which the values to variables are
linear operators on some Hilbert space. For the case of constraints given by a
system of linear equations over the two-element field, this relaxation has
received considerable attention in the foundations of quantum mechanics, where
such constructions as the Mermin-Peres magic square show that there are systems
that have no solutions in the Boolean domain, but have solutions via operator
assignments on some finite-dimensional Hilbert space. We obtain a complete
characterization of the classes of Boolean relations for which there is a gap
between satisfiability in the Boolean domain and the relaxation of
satisfiability via operator assignments. To establish our main result, we adapt
the notion of primitive-positive definability (pp-definability) to our setting,
a notion that has been used extensively in the study of constraint satisfaction
problems. Here, we show that pp-definability gives rise to gadget reductions
that preserve satisfiability gaps. We also present several additional
applications of this method. In particular and perhaps surprisingly, we show
that the relaxed notion of pp-definability in which the quantified variables
are allowed to range over operator assignments gives no additional expressive
power in defining Boolean relations
Studies of parton thermalization at RHIC
We consider the evolution of a parton system which is formed in the central
region just after a relativistic heavy ion collision. The parton consist of
mostly gluons, minijets, which are produced by elastic scattering between
constituent partons of the colliding nuclei. We assume the system can be
described by a semi-classical Boltzmann transport equation, which we solve by
means of the test particle Monte-Carlo method including retardation. The
partons proliferate via secondary radiative processes until the
thermalization is reached for some assumptions. The extended system is
thermalized at about fm/ with MeV and stays in equilibrium
for about 2 fm/ with breaking temperature MeV in the rapidity
central region.Comment: 14 page
Deep-Inelastic Final States in a Space-Time Description of Shower Development and Hadronization
We extend a quantum kinetic approach to the description of hadronic showers
in space, time and momentum space to deep-inelastic collisions, with
particular reference to experiments at HERA. We follow the history of hard
scattering events back to the initial hadronic state and forward to the
formation of colour-singlet pre-hadronic clusters and their decays into
hadrons. The time evolution of the space-like initial-state shower and the
time-like secondary partons are treated similarly, and cluster formation is
treated using a spatial criterion motivated by confinement and a
non-perturbative model for hadronization. We calculate the time evolution of
particle distributions in rapidity, transverse and longitudinal space. We also
compare the transverse hadronic energy flow and the distribution of observed
hadronic masses with experimental data from HERA, and find encouraging results.
The techniques developed in this paper may be applied in the future to more
complicated processes such as eA, pp, pA and AA collisions.Comment: 44 pages plus 14 postscript figure
- …
