3,436 research outputs found

    Sky survey at far infrared wavelengths using a balloon-borne telescope

    Get PDF
    Localized sources of far infrared radiation (approximately 50 microns) have been detected during a high altitude balloon flight with a 40 cm telescope and silicon detectors. The flight system is described and preliminary results are presented. A large area of the sky has been scanned for localized sources of far infrared radiation, using a balloon-borne system that was sensitive to wavelengths beyond about 55 microns. Two Molectron silicon bolometers were used, with a Newtonian telescope having a 40 cm primary. The telescope was driven in azimuth at a fixed elevation; this mode of scanning was carried out for the duration of each of two balloon flights. The flight system is described

    Condensation phase transitions of symmetric conserved-mass aggregation model on complex networks

    Full text link
    We investigate condensation phase transitions of symmetric conserved-mass aggregation (SCA) model on random networks (RNs) and scale-free networks (SFNs) with degree distribution P(k)kγP(k) \sim k^{-\gamma}. In SCA model, masses diffuse with unite rate, and unit mass chips off from mass with rate ω\omega. The dynamics conserves total mass density ρ\rho. In the steady state, on RNs and SFNs with γ>3\gamma>3 for ω\omega \neq \infty, we numerically show that SCA model undergoes the same type condensation transitions as those on regular lattices. However the critical line ρc(ω)\rho_c (\omega) depends on network structures. On SFNs with γ3\gamma \leq 3, the fluid phase of exponential mass distribution completely disappears and no phase transitions occurs. Instead, the condensation with exponentially decaying background mass distribution always takes place for any non-zero density. For the existence of the condensed phase for γ3\gamma \leq 3 at the zero density limit, we investigate one lamb-lion problem on RNs and SFNs. We numerically show that a lamb survives indefinitely with finite survival probability on RNs and SFNs with γ>3\gamma >3, and dies out exponentially on SFNs with γ3\gamma \leq 3. The finite life time of a lamb on SFNs with γ3\gamma \leq 3 ensures the existence of the condensation at the zero density limit on SFNs with γ3\gamma \leq 3 at which direct numerical simulations are practically impossible. At ω=\omega = \infty, we numerically confirm that complete condensation takes place for any ρ>0\rho > 0 on RNs. Together with the recent study on SFNs, the complete condensation always occurs on both RNs and SFNs in zero range process with constant hopping rate.Comment: 6 pages, 6 figure

    On the ill/well-posedness and nonlinear instability of the magneto-geostrophic equations

    Full text link
    We consider an active scalar equation that is motivated by a model for magneto-geostrophic dynamics and the geodynamo. We prove that the non-diffusive equation is ill-posed in the sense of Hadamard in Sobolev spaces. In contrast, the critically diffusive equation is well-posed. In this case we give an example of a steady state that is nonlinearly unstable, and hence produces a dynamo effect in the sense of an exponentially growing magnetic field.Comment: We have modified the definition of Lipschitz well-posedness, in order to allow for a possible loss in regularity of the solution ma

    "Peeling property" for linearized gravity in null coordinates

    Get PDF
    A complete description of the linearized gravitational field on a flat background is given in terms of gauge-independent quasilocal quantities. This is an extension of the results from gr-qc/9801068. Asymptotic spherical quasilocal parameterization of the Weyl field and its relation with Einstein equations is presented. The field equations are equivalent to the wave equation. A generalization for Schwarzschild background is developed and the axial part of gravitational field is fully analyzed. In the case of axial degree of freedom for linearized gravitational field the corresponding generalization of the d'Alembert operator is a Regge-Wheeler equation. Finally, the asymptotics at null infinity is investigated and strong peeling property for axial waves is proved.Comment: 27 page

    Influence of primary particle density in the morphology of agglomerates

    Get PDF
    Agglomeration processes occur in many different realms of science such as colloid and aerosol formation or formation of bacterial colonies. We study the influence of primary particle density in agglomerate structure using diffusion-controlled Monte Carlo simulations with realistic space scales through different regimes (DLA and DLCA). The equivalence of Monte Carlo time steps to real time scales is given by Hirsch's hydrodynamical theory of Brownian motion. Agglomerate behavior at different time stages of the simulations suggests that three indices (fractal exponent, coordination number and eccentricity index) characterize agglomerate geometry. Using these indices, we have found that the initial density of primary particles greatly influences the final structure of the agglomerate as observed in recent experimental works.Comment: 11 pages, 13 figures, PRE, to appea

    Conformal scattering for a nonlinear wave equation on a curved background

    Full text link
    The purpose of this paper is to establish a geometric scattering result for a conformally invariant nonlinear wave equation on an asymptotically simple spacetime. The scattering operator is obtained via trace operators at null infinities. The proof is achieved in three steps. A priori linear estimates are obtained via an adaptation of the Morawetz vector field in the Schwarzschild spacetime and a method used by H\"ormander for the Goursat problem. A well-posedness result for the characteristic Cauchy problem on a light cone at infinity is then obtained. This requires a control of the nonlinearity uniform in time which comes from an estimates of the Sobolev constant and a decay assumption on the nonlinearity of the equation. Finally, the trace operators on conformal infinities are built and used to define the conformal scattering operator

    A family of diameter-based eigenvalue bounds for quantum graphs

    Full text link
    We establish a sharp lower bound on the first non-trivial eigenvalue of the Laplacian on a metric graph equipped with natural (i.e., continuity and Kirchhoff) vertex conditions in terms of the diameter and the total length of the graph. This extends a result of, and resolves an open problem from, [J. B. Kennedy, P. Kurasov, G. Malenov\'a and D. Mugnolo, Ann. Henri Poincar\'e 17 (2016), 2439--2473, Section 7.2], and also complements an analogous lower bound for the corresponding eigenvalue of the combinatorial Laplacian on a discrete graph. We also give a family of corresponding lower bounds for the higher eigenvalues under the assumption that the total length of the graph is sufficiently large compared with its diameter. These inequalities are sharp in the case of trees.Comment: Substantial revision of v1. The main result, originally for the first eigenvalue, has been generalised to the higher ones. The title has been changed and the proofs substantially reorganised to reflect the new result, and a section containing concluding remarks has been adde

    Performance requirements analysis for payload delivery from a space station

    Get PDF
    Operations conducted from a space station in low Earth orbit which have different constraints and opportunities than those conducted from direct Earth launch were examined. While a space station relieves many size and performance constraints on the space shuttle, the space station's inertial orbit has different launch window constraints from those associated with customary Earth launches which reflect upon upper stage capability. A performance requirements analysis was developed to provide a reference source of parametric data, and specific case solutions and upper stage sizing trade to assist potential space station users and space station and upper stage developers assess the impacts of a space station on missions of interest

    Borderline Aggregation Kinetics in ``Dry'' and ``Wet'' Environments

    Full text link
    We investigate the kinetics of constant-kernel aggregation which is augmented by either: (a) evaporation of monomers from finite-mass clusters, or (b) continuous cluster growth -- \ie, condensation. The rate equations for these two processes are analyzed using both exact and asymptotic methods. In aggregation-evaporation, if the evaporation is mass conserving, \ie, the monomers which evaporate remain in the system and continue to be reactive, the competition between evaporation and aggregation leads to several asymptotic outcomes. For weak evaporation, the kinetics is similar to that of aggregation with no evaporation, while equilibrium is quickly reached in the opposite case. At a critical evaporation rate, the cluster mass distribution decays as k5/2k^{-5/2}, where kk is the mass, while the typical cluster mass grows with time as t2/3t^{2/3}. In aggregation-condensation, we consider the process with a growth rate for clusters of mass kk, LkL_k, which is: (i) independent of kk, (ii) proportional to kk, and (iii) proportional to kμk^\mu, with 0<μ<10<\mu<1. In the first case, the mass distribution attains a conventional scaling form, but with the typical cluster mass growing as tlntt\ln t. When LkkL_k\propto k, the typical mass grows exponentially in time, while the mass distribution again scales. In the intermediate case of LkkμL_k\propto k^\mu, scaling generally applies, with the typical mass growing as t1/(1μ)t^{1/(1-\mu)}. We also give an exact solution for the linear growth model, LkkL_k\propto k, in one dimension.Comment: plain TeX, 17 pages, no figures, macro file prepende
    corecore