66,721 research outputs found

    Multimegawatt thermionic reactor systems for space applications

    Get PDF
    Design features and performance characteristics of thermionic reactor systems for space application

    Robust CNOT gates from almost any interaction

    Get PDF
    There are many cases where the interaction between two qubits is not precisely known, but single qubit operations are available. In this paper we show how, regardless of an incomplete knowledge of the strength or form of the interaction between two qubits, it is often possible to construct a CNOT gate which has arbitrarily high fidelity. In particular, we show that oscillations in the strength of the exchange interaction in solid state Si and Ge structures are correctable.Comment: 5 pages, 2 figure

    VTOL in ground effect flows for closely spaced jets

    Get PDF
    Results of a series of in ground effect twin jet tests are presented along with flow models for closely spaced jets to help predict pressure and upwash forces on simulated aircraft surfaces. The isolated twin jet tests revealed unstable fountains over a range of spacings and jet heights, regions of below ambient pressure on the ground, and negative pressure differential in the upwash flow field. A separate computer code was developed for vertically oriented, incompressible jets. This model more accurately reflects fountain behavior without fully formed wall jets, and adequately predicts ground isobars, upwash dynamic pressure decay, and fountain lift force variation with height above ground

    A low-numerical dissipation, patch-based adaptive-mesh-refinement method for large-eddy simulation of compressible flows

    Get PDF
    This paper describes a hybrid finite-difference method for the large-eddy simulation of compressible flows with low-numerical dissipation and structured adaptive mesh refinement (SAMR). A conservative flux-based approach is described with an explicit centered scheme used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. Three-dimensional numerical simulations of a Richtmyer-Meshkov instability are presented

    Spheromak formation and sustainment studies at the sustained spheromak physics experiment using high-speed imaging and magnetic diagnostics

    Get PDF
    A high-speed imaging system with shutter speeds as fast as 2 ns and double frame capability has been used to directly image the formation and evolution of the sustained spheromak physics experiment (SSPX) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)]. Reproducible plasma features have been identified with this diagnostic and divided into three groups, according to the stage in the discharge at which they occur: (i) breakdown and ejection, (ii) sustainment, and (iii) decay. During the first stage, plasma descends into the flux conserver shortly after breakdown and a transient plasma column is formed. The column then rapidly bends and simultaneously becomes too dim to photograph a few microseconds after formation. It is conjectured here that this rapid bending precedes the transfer of toroidal to poloidal flux. During sustainment, a stable plasma column different from the transient one is observed. It has been possible to measure the column diameter and compare it to CORSICA [A. Tarditi et al., Contrib. Plasma Phys. 36, 132 (1996)], a magnetohydrodynamic equilibrium reconstruction code which showed good agreement with the measurements. Elongation and velocity measurements were made of cathode patterns also seen during this stage, possibly caused by pressure gradients or E×B drifts. The patterns elongate in a toroidal-only direction which depends on the magnetic-field polarity. During the decay stage the column diameter expands as the current ramps down, until it eventually dissolves into filaments. With the use of magnetic probes inserted in the gun region, an X point which moved axially depending on current level and toroidal mode number was observed in all the stages of the SSPX plasma discharge

    Z -> b\bar{b} Versus Dynamical Electroweak Symmetry Breaking involving the Top Quark

    Full text link
    In models of dynamical electroweak symmetry breaking which sensitively involve the third generation, such as top quark condensation, the effects of the new dynamics can show up experimentally in Z->b\bar{b}. We compare the sensitivity of Z->b\bar{b} and top quark production at the Tevatron to models of the new physics. Z->b\bar{b} is a relatively more sensitive probe to new strongly coupled U(1) gauge bosons, while it is generally less sensitive a probe to new physics involving color octet gauge bosons as is top quark production itself. Nonetheless, to accomodate a significant excess in Z->b\bar{b} requires choosing model parameters that may be ruled out within run I(b) at the Tevatron.Comment: LaTex file, 19 pages + 2 Figs., Fermilab-Pub-94/231-

    Atmospheric environment for space shuttle (STS-8) launch

    Get PDF
    Selected atmospheric conditions observed near Space Shuttle STS-8 launch time on August 30, 1983, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given. Also presented are wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-8 vehicle ascent and SRB descent/impact were constructed. The STS-8 ascent meteorological data tape was constructed

    Limits on Non-Standard Top Quark Couplings from Electroweak Measurements

    Get PDF
    We calculate the typical size of loop corrections to electroweak observables arising from non-standard ZttZ {\overline t } t and WtbW t b vertices. We use an effective Lagrangian formalism based on the electroweak gauge group SU(2)L×U(1)YU(1)EMSU(2)_L\times U(1)_Y \rightarrow U(1)_{EM}. Limits on the non-standard model top quark couplings from electroweak observables are presented and compared with previously obtained limits.Comment: 9 pages, uses epsf.st

    Thick planar domain wall: its thin wall limit and dynamics

    Full text link
    We consider a planar gravitating thick domain wall of the λϕ4\lambda \phi^4 theory as a spacetime with finite thickness glued to two vacuum spacetimes on each side of it. Darmois junction conditions written on the boundaries of the thick wall with the embedding spacetimes reproduce the Israel junction condition across the wall in the limit of infinitesimal thickness. The thick planar domain wall located at a fixed position is then transformed to a new coordinate system in which its dynamics can be formulated. It is shown that the wall's core expands as if it were a thin wall. The thickness in the new coordinates is not constant anymore and its time dependence is given.Comment: 11 pages, to appear in IJMP
    corecore