7,089 research outputs found

    Investigation of tidal displacements of the Earth's surface by laser ranging to GEOS-3

    Get PDF
    An analysis of laser ranging data from three stations was carried out in an attempt to measure the geometric Earth tide. Two different approaches to the problem were investigated. The dynamic method computes pass to pass apparent movements in stations height relative to short arcs fitted to several passes of data from the same station by the program GEODYNE. The quasi-geometric method reduces the dependence on unmodelled satellite dynamics to a knowledge of only the radial position of the satellite by considering two station simultaneous ranging at the precise time that the satellite passes through the plane defined by two stations and the center of mass of the Earth

    Colors, magnitudes and velocity dispersions in early-type galaxies: Implications for galaxy ages and metallicities

    Get PDF
    We present an analysis of the color-magnitude-velocity dispersion relation for a sample of 39320 early-type galaxies within the Sloan Digital Sky Survey. We demonstrate that the color-magnitude relation is entirely a consequence of the fact that both the luminosities and colors of these galaxies are correlated with stellar velocity dispersions. Previous studies of the color-magnitude relation over a range of redshifts suggest that the luminosity of an early-type galaxy is an indicator of its metallicity, whereas residuals in color from the relation are indicators of the luminosity-weighted age of its stars. We show that this, when combined with our finding that velocity dispersion plays a crucial role, has a number of interesting implications. First, galaxies with large velocity dispersions tend to be older (i.e., they scatter redward of the color-magnitude relation). Similarly, galaxies with large dynamical mass estimates also tend to be older. In addition, at fixed luminosity, galaxies which are smaller, or have larger velocity dispersions, or are more massive, tend to be older. Second, models in which galaxies with the largest velocity dispersions are also the most metal poor are difficult to reconcile with our data. However, at fixed velocity dispersion, galaxies have a range of ages and metallicities: the older galaxies have smaller metallicities, and vice-versa. Finally, a plot of velocity dispersion versus luminosity can be used as an age indicator: lines of constant age run parallel to the correlation between velocity dispersion and luminosity.Comment: 12 pages, 9 figures. Accepted by A

    B3 0003+387: AGN Marked Large-Scale Structure at z=1.47?

    Full text link
    We present evidence for a significant overdensity of red galaxies, as much as a factor of 14 over comparable field samples, in the field of the z=1.47 radio galaxy B3 0003+387. The colors and luminosities of the brightest red galaxies are consistent with their being at z>0.8. The radio galaxy and one of the red galaxies are separated by 5" and show some evidence of a possible interaction. However, the red galaxies do not show any strong clustering around the radio galaxy nor around any of the brighter red galaxies. The data suggest that we are looking at a wall or sheet of galaxies, possibly associated with the radio galaxy at z=1.47. Spectroscopic redshifts of these red galaxies will be necessary to confirm this large-scale structure.Comment: 19 pages, 7 figures, LaTeX2e/AASTeX v5.0.2. The full photometric catalog is included as a separate deluxetable file. To appear in the Astronomical Journal (~Nov 00

    Sunyaev - Zel'dovich fluctuations from spatial correlations between clusters of galaxies

    Full text link
    We present angular power spectra of the cosmic microwave background radiation anisotropy due to fluctuations of the Sunyaev-Zel'dovich (SZ) effect through clusters of galaxies. A contribution from the correlation among clusters is especially focused on, which has been neglected in the previous analyses. Employing the evolving linear bias factor based on the Press-Schechter formalism, we find that the clustering contribution amounts to 20-30% of the Poissonian one at degree angular scales. If we exclude clusters in the local universe, it even exceeds the Poissonian noise, and makes dominant contribution to the angular power spectrum. As a concrete example, we demonstrate the subtraction of the ROSAT X-ray flux-limited cluster samples. It indicates that we should include the clustering effect in the analysis of the SZ fluctuations. We further find that the degree scale spectra essentially depend upon the normalization of the density fluctuations, i.e., \sigma_8, and the gas mass fraction of the cluster, rather than the density parameter of the universe and details of cluster evolution models. Our results show that the SZ fluctuations at the degree scale will provide a possible measure of \sigma_8, while the arc-minute spectra a probe of the cluster evolution. In addition, the clustering spectrum will give us valuable information on the bias at high redshift, if we can detect it by removing X-ray luminous clusters.Comment: 11 pages, 4 figures, submitted to Astrophysical Journa

    Towards a Holistic View of the Heating and Cooling of the Intracluster Medium

    Full text link
    (Abridged) X-ray clusters are conventionally divided into two classes: "cool core" (CC) clusters and "non-cool core" (NCC) clusters. Yet relatively little attention has been given to the origins of this dichotomy and, in particular, to the energetics and thermal histories of the two classes. We develop a model for the entropy profiles of clusters starting from the configuration established by gravitational shock heating and radiative cooling. At large radii, gravitational heating accounts for the observed profiles and their scalings well. However, at small and intermediate radii, radiative cooling and gravitational heating cannot be combined to explain the observed profiles of either type of cluster. The inferred entropy profiles of NCC clusters require that material is preheated prior to cluster collapse in order to explain the absence of low entropy (cool) material in these systems. We show that a similar modification is also required in CC clusters in order to match their properties at intermediate radii. In CC clusters, this modification is unstable, and an additional process is required to prevent cooling below a temperature of a few keV. We show that this can be achieved by adding a self-consistent AGN feedback loop in which the lowest-entropy, most rapidly cooling material is heated so that it rises buoyantly to mix with material at larger radii. The resulting model does not require fine tuning and is in excellent agreement with a wide variety of observational data. Some of the other implications of this model are briefly discussed.Comment: 27 pages, 13 figures, MNRAS accepted. Discussion of cluster heating energetics extended, results unchange

    A Richness Study of 14 Distant X-ray Clusters From the 160 Square Degree Survey

    Get PDF
    We have measured the surface density of galaxies toward 14 X-ray-selected cluster candidates at redshifts greater than z=0.46, and we show that they are associated with rich galaxy concentrations. We find that the clusters range between Abell richness classes 0-2, and have a most probable richness class of one. We compare the richness distribution of our distant clusters to those for three samples of nearby clusters with similar X-ray luminosities. We find that the nearby and distant samples have similar richness distributions, which shows that clusters have apparently not evolved substantially in richness since redshift z =0.5. We compare the distribution of distant X-ray clusters in the L_x--richness plane to the distribution of optically-selected clusters from the Palomar Distant Cluster Survey. The optically-selected clusters appear overly rich for their X-ray luminosities when compared to X-ray-selected clusters. Apparently, X-ray and optical surveys do not necessarily sample identical mass concentrations at large redshifts. This may indicate the existence of a population of optically rich clusters with anomalously low X-ray emission. More likely, however, it reflects the tendency for optical surveys to select unvirialized mass concentrations, as might be expected when peering along large-scale filaments.Comment: The abstract has been abridged. Accepted for publication in the Astrophysical Journa

    Masses for the Local Group and the Milky Way

    Get PDF
    We use the very large Millennium Simulation of the concordance Λ\LambdaCDM cosmogony to calibrate the bias and error distribution of Timing Argument estimators of the masses of the Local Group and of the Milky Way. From a large number of isolated spiral-spiral pairs similar to the Milky Way/Andromeda system, we find the interquartile range of the ratio of timing mass to true mass to be a factor of 1.8, while the 5% and 95% points of the distribution of this ratio are separated by a factor of 5.7. Here we define true mass as the sum of the ``virial'' masses M200M_{200} of the two dominant galaxies. For current best values of the distance and approach velocity of Andromeda this leads to a median likelihood estimate of the true mass of the Local Group of 5.27\times 10^{12}\msun, or log⁡MLG/M⊙=12.72\log M_{LG}/M_\odot = 12.72, with an interquartile range of [12.58,12.83][12.58, 12.83] and a 5% to 95% range of [12.26,13.01][12.26, 13.01]. Thus a 95% lower confidence limit on the true mass of the Local Group is 1.81\times 10^{12}\msun. A timing estimate of the Milky Way's mass based on the large recession velocity observed for the distant satellite Leo I works equally well, although with larger systematic uncertainties. It gives an estimated virial mass for the Milky Way of 2.43 \times 10^{12}\msun with a 95% lower confidence limit of 0.80 \times 10^{12}\msun.Comment: 11 pages, 6 figures, MNRAS accepted. Added a new discussion paragraph and a new figure regarding the relative transverse velocity but conclusions unchange

    The Evolution of X-ray Clusters and the Entropy of the Intra Cluster Medium

    Full text link
    The thermodynamics of the diffuse, X-ray emitting gas in clusters of galaxies is determined by gravitational processes associated with shock heating, adiabatic compression, and non-gravitational processes such as heating by SNe, stellar winds, activity in the central galactic nucleus, and radiative cooling. The effect of gravitational processes on the thermodynamics of the Intra Cluster Medium (ICM) can be expressed in terms of the ICM entropy S ~ ln(T/\rho^{2/3}). We use a generalized spherical model to compute the X-ray properties of groups and clusters for a range of initial entropy levels in the ICM and for a range of mass scales, cosmic epochs and background cosmologies. We find that the statistical properties of the X-ray clusters strongly depend on the value of the initial excess entropy. Assuming a constant, uniform value for the excess entropy, the present-day X-ray data are well fitted for the following range of values K_* = kT/\mu m_p \rho^{2/3} = (0.4\pm 0.1) \times 10^{34} erg cm^2 g^{-5/3} for clusters with average temperatures kT>2 keV; K_* = (0.2\pm 0.1) \times 10^{34} erg cm^2 g^{-5/3} for groups and clusters with average temperatures kT<2 keV. These values correspond to different excess energy per particle of kT \geq 0.1 (K_*/0.4\times 10^{34}) keV. The dependence of K_* on the mass scale can be well reproduced by an epoch dependent external entropy: the relation K_* = 0.8(1+z)^{-1}\times 10^{34} erg cm^2 g^{-5/3} fits the data over the whole temperature range. Observations of both local and distant clusters can be used to trace the distribution and the evolution of the entropy in the cosmic baryons, and ultimately to unveil the typical epoch and the source of the heating processes.Comment: 53 pages, LateX, 19 figures, ApJ in press, relevant comments and references adde

    On the Number Density of Sunyaev-Zel'dovich Clusters of Galaxies

    Get PDF
    If the mean properties of clusters of galaxies are well described by the entropy-driven model, the distortion induced by the cluster population on the blackbody spectrum of the Cosmic Microwave Background radiation is proportional to the total amount of intracluster gas while temperature anisotropies are dominated by the contribution of clusters of about 10^{14} solar masses. This result depends marginally on cluster parameters and it can be used to estimate the number density of clusters with enough hot gas to produce a detectable Sunyaev-Zel'dovich effect. Comparing different cosmological models, the relation depends mainly on the density parameter Omega_m. If the number density of clusters could be estimated by a different method, then this dependence could be used to constrain Omega_m.Comment: 8 pages, 3 figures, submitted to ApJ Letter
    • 

    corecore