337 research outputs found

    Ferritin nanovehicle for targeted delivery of cytochrome C to cancer cells

    Get PDF
    In this work, we have exploited the unique properties of a chimeric archaeal-human ferritin to encapsulate, deliver and release cytochrome c and induce apoptosis in a myeloid leukemia cell line. The chimeric protein combines the versatility in 24-meric assembly and cargo incorporation capability of Archaeglobus fulgidus ferritin with specific binding of human H ferritin to CD71, the “heavy duty” carrier responsible for transferrin-iron uptake. Delivery of ferritin-encapsulated cytochrome C to the Acute Promyelocytic Leukemia (APL) NB4 cell line, highly resistant to transfection by conventional methods, was successfully achieved in vitro. The effective liberation of cytochrome C within the cytosolic environment, demonstrated by double fluorescent labelling, induced apoptosis in the cancer cells

    IR ion spectroscopy in a combined approach with MS/MS and IM-MS to discriminate epimeric anthocyanin glycosides (cyanidin 3-O-glucoside and -galactoside)

    Get PDF
    Anthocyanins are widespread in plants and flowers, being responsible for their different colouring. Two representative members of this family have been selected, cyanidin 3-O-β-glucopyranoside and 3-O-β-galactopyranoside, and probed by mass spectrometry based methods, testing their performance in discriminating between the two epimers. The native anthocyanins, delivered into the gas phase by electrospray ionization, display a comparable drift time in ion mobility mass spectrometry (IM-MS) and a common fragment, corresponding to loss of the sugar moiety, in their collision induced dissociation (CID) pattern. However, the IR multiple photon dissociation (IRMPD) spectra in the fingerprint range show a feature particularly evident in the case of the glucoside. This signature is used to identify the presence of cyanidin 3-O-β-glucopyranoside in a natural extract of pomegranate. In an effort to increase any differentiation between the two epimers, aluminum complexes were prepared and sampled for elemental composition by FT-ICR-MS. CID experiments now display an extensive fragmentation pattern, showing few product ions peculiar to each species. More noteworthy is the IRMPD behavior in the OH stretching range showing significant differences in the spectra of the two epimers. DFT calculations allow to interpret the observed distinct bands due to a varied network of hydrogen bonding and relative conformer stability

    Over 1200 drugs-related deaths and 190,000 opiate-user-years of follow-up : relative risks by sex and age-group

    Get PDF
    Heroin users/injectors' risk of drugs-related death by sex and current age is weakly estimated both in individual cohorts of under 1000 clients, 5000 person-years or 50 drugs-related deaths and when using cross-sectional data. A workshop in Cambridge analysed six cohorts who were recruited according to a common European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) protocol from drug treatment agencies in Barcelona, Denmark, Dublin, Lisbon, Rome and Vienna in the 1990s; and, as external reference, opiate-user arrestees in France and hepatitis C diagnosed ever-injectors in Scotland in 1993-2001, both followed by database linkage to December 2001. EMCDDA cohorts recorded approximately equal numbers of drugs-related deaths (864) and deaths from other non-HIV causes (865) during 106,152 person-years of follow-up. External cohorts contributed 376 drugs-related deaths (Scotland 195, France 181) and 418 deaths from non-HIV causes (Scotland 221, France 197) during 86,417 person-years of follow-up (Scotland 22,670, France 63,747). EMCDDA cohorts reported 707 drugs-related deaths in 81,367 man-years {8.7 per 1000 person-years, 95% CI: 8.1 to 9.4} but only 157 in 24,785 person-years for females {6.3 per 1000 person-years, 95% CI: 5.4 to 7.4}. Except in external cohorts, relative risks by current age-group were not particularly strong, and more modest in Poisson regression than in cross-sectional analyses: relative risk was 1.2 (95% CI: 1.0-1.4) for 35-44 year olds compared to 15-24 year 3 olds, but 1.4 for males (95%CI: 1.2-1.6), and dramatically lower at 0.44 after the first year of follow-up (95% CI: 0.37-0.52)

    Open access for operational research publications from low- and middle-income countries: who pays?

    Get PDF
    Open-access journal publications aim to ensure that new knowledge is widely disseminated and made freely accessible in a timely manner so that it can be used to improve people's health, particularly those in low- and middle-income countries. In this paper, we briefly explain the differences between closed- and open-access journals, including the evolving idea of the 'open-access spectrum'. We highlight the potential benefits of supporting open access for operational research, and discuss the conundrum and ways forward as regards who pays for open access

    The Pictet-Spengler reaction updates its habits

    Get PDF
    The Pictet-Spengler reaction (P-S) is one of the most direct, efficient, and variable synthetic method for the construction of privileged pharmacophores such as tetrahydroisoquinolines (THIQs), tetrahydro-β-carbolines (THBCs), and polyheterocyclic frameworks. In the lustro (five-year period) following its centenary birthday, the P-S reaction did not exit the stage but it came up again on limelight with new features. This review focuses on the interesting results achieved in this period (2011–2015), analyzing the versatility of this reaction. Classic P-S was reported in the total synthesis of complex alkaloids, in combination with chiral catalysts as well as for the generation of libraries of compounds in medicinal chemistry. The P-S has been used also in tandem reactions, with the sequences including ring closing metathesis, isomerization, Michael addition, and Gold- or Brønsted acid-catalyzed N-acyliminium cyclization. Moreover, the combination of P-S reaction with Ugi multicomponent reaction has been exploited for the construction of highly complex polycyclic architectures in few steps and high yields. The P-S reaction has also been successfully employed in solid-phase synthesis, affording products with different structures, including peptidomimetics, synthetic heterocycles, and natural compounds. Finally, the enzymatic version of P-S has been reported for biosynthesis, biotransformations, and bioconjugations

    Design, Fabrication, and Experimental Validation of Microfluidic Devices for the Investigation of Pore-Scale Phenomena in Underground Gas Storage Systems

    Get PDF
    The understanding of multiphase flow phenomena occurring in porous media at the pore scale is fundamental in a significant number of fields, from life science to geo and environmental engineering. However, because of the optical opacity and the geometrical complexity of natural porous media, detailed visual characterization is not possible or is limited and requires powerful and expensive imaging techniques. As a consequence, the understanding of micro-scale behavior is based on the interpretation of macro-scale parameters and indirect measurements. Microfluidic devices are transparent and synthetic tools that reproduce the porous network on a 2D plane, enabling the direct visualization of the fluid dynamics. Moreover, microfluidic patterns (also called micromodels) can be specifically designed according to research interests by tuning their geometrical features and surface properties. In this work we design, fabricate and test two different micromodels for the visualization and analysis of the gas-brine fluid flow, occurring during gas injection and withdrawal in underground storage systems. In particular, we compare two different designs: a regular grid and a real rock-like pattern reconstructed from a thin section of a sample of Hostun rock. We characterize the two media in terms of porosity, tortuosity and pore size distribution using the A* algorithm and CFD simulation. We fabricate PDMS-glass devices via soft lithography, and we perform preliminary air-water displacement tests at different capillary numbers to observe the impact of the design on the fluid dynamics. This preliminary work serves as a validation of design and fabrication procedures and opens the way to further investigations

    Nigritanine as a new potential antimicrobial alkaloid for the treatment of staphylococcus aureus-induced infections

    Get PDF
    Staphylococcus aureus is a major human pathogen causing a wide range of nosocomial infections including pulmonary, urinary, and skin infections. Notably, the emergence of bacterial strains resistant to conventional antibiotics has prompted researchers to find new compounds capable of killing these pathogens. Nature is undoubtedly an invaluable source of bioactive molecules characterized by an ample chemical diversity. They can act as unique platform providing new scaffolds for further chemical modifications in order to obtain compounds with optimized biological activity. A class of natural compounds with a variety of biological activities is represented by alkaloids, important secondary metabolites produced by a large number of organisms including bacteria, fungi, plants, and animals. In this work, starting from the screening of 39 alkaloids retrieved from a unique in-house library, we identified a heterodimer β-carboline alkaloid, nigritanine, with a potent anti-Staphylococcus action. Nigritanine, isolated from Strychnos nigritana, was characterized for its antimicrobial activity against a reference and three clinical isolates of S. aureus. Its potential cytotoxicity was also evaluated at short and long term against mammalian red blood cells and human keratinocytes, respectively. Nigritanine showed a remarkable antimicrobial activity (minimum inhibitory concentration of 128 μM) without being toxic in vitro to both tested cells. The analysis of the antibacterial activity related to the nigritanine scaffold furnished new insights in the structure-activity relationships (SARs) of β-carboline, confirming that dimerization improves its antibacterial activity. Taking into account these interesting results, nigritanine can be considered as a promising candidate for the development of new antimicrobial molecules for the treatment of S. aureus-induced infections

    Inhibition of adenovirus transport from the endosome to the cell nucleus by rotenone

    Get PDF
    Regardless of the clinical impact of human adenovirus (HAdV) infections in the healthy population and its high morbidity in immunosuppressed patients, a specific treatment is still not yet available. In this study, we screened the CM1407 COST Action's chemical library, comprising 1,233 natural products to identify compounds that restrict HAdV infection. Among them, we identified rotenolone, a compound that significantly inhibited HAdV infection. Next, we selected four isoflavonoid-type compounds (e.g., rotenone, deguelin, millettone, and tephrosin), namely rotenoids, structurally related to rotenolone in order to evaluate and characterized in vitro their antiviral activities against HAdV and human cytomegalovirus (HCMV). Their IC50 values for HAdV ranged from 0.0039 mu M for rotenone to 0.07 mu M for tephrosin, with selective indices ranging from 164.1 for rotenone to 2,429.3 for deguelin. In addition, the inhibition of HCMV replication ranged from 50% to 92.1% at twice the IC50 concentrations obtained in the plaque assay for each compound against HAdV. Our results indicated that the mechanisms of action of rotenolone, deguelin, and tephrosin involve the late stages of the HAdV replication cycle. However, the antiviral mechanism of action of rotenone appears to involve the alteration of the microtubular polymerization, which prevents HAdV particles from reaching the nuclear membrane of the cell. These isoflavonoid-type compounds exert high antiviral activity against HAdV at nanomolar concentrations, and can be considered strong hit candidates for the development of a new class of broad-spectrum antiviral drugs

    Hedgehog Pathway Inhibition by Novel Small Molecules Impairs Melanoma Cell Migration and Invasion under Hypoxia

    Get PDF
    Melanoma is the principal cause of death in skin cancer due to its ability to invade and cause metastasis. Hypoxia, which characterises the tumour microenvironment (TME), plays an important role in melanoma development, as cancer cells can adapt and acquire a more aggressive phenotype. Carbonic anhydrases (CA) activity, involved in pH regulation, is related to melanoma cell migration and invasion. Furthermore, the Hedgehog (Hh) pathway, already known for its role in physiological processes, is a pivotal character in cancer cell growth and can represent a promising pharmacological target. In this study, we targeted Hh pathway components with cyclopamine, glabrescione B and C22 in order to observe their effect on carbonic anhydrase XII (CAXII) expression especially under hypoxia. We then performed a migration and invasion assay on two melanoma cell lines (SK-MEL-28 and A375) where Smoothened, the upstream protein involved in Hh regulation, and GLI1, the main transcription factor that determines Hh pathway activation, were chemically inhibited. Data suggest the existence of a relationship between CAXII, hypoxia and the Hedgehog pathway demonstrating that the chemical inhibition of the Hh pathway and CAXII reduction resulted in melanoma migration and invasion impairment especially under hypoxia. As in recent years drug resistance to small molecules has arisen, the development of new chemical compounds is crucial. The multitarget Hh inhibitor C22 proved to be effective without signs of cytotoxicity and, for this reason, it can represent a promising compound for future studies, with the aim to reach a better melanoma disease management

    Potential of a natural compound as hedgehog pathway inhibitor for the treatment of intrahepatic cholangiocarcinoma

    Get PDF
    Intrahepatic cholangiocarcinoma (iCCA) represents a rare cancer arising in the biliary tree, linked to an alarming fatality rate. It is subcategorized into large bile duct iCCA and small bile duct iCCA, according to the World Health Organization new classification. Regretfully, the high variability of iCCA at the molecular, genomic, histological and clinical levels makes these difficulties unmanageable. However, improvement in targeted therapy, surgical management, and molecular characterization have been made in the past few years. Indeed, the molecular pathogenesis of iCCA is intricate and involves multiple molecular networks: among them, Hedgehog (Hh) pathway plays a crucial role in many hallmarks of iCCA, such as tumor proliferation, survival, migration and epithelial-mesenchymal transition reprogramming. The main intent of this study is to prove the antitumor efficacy of a natural compound, named Glabrescione B (GlaB) inhibiting Hh pathway in experimental models of human iCCA, in vitro. Trypan Blue Exclusion test have been used to assess, at different time points, the dose-response of free GlaB and hyaluronic acid (HA)-encapsulated GlaB (to better convey the drug into the site of damage), an inhibitor of Gli1 (Hh downstream transcriptional factor). Western blot analyses have been used to evaluate the target protein level. Wound healing assay has been established to evaluate the migratory activity of all cell lines subjected to the treatments. All experiments have been conducted in n.3 experimental replicates. Our research shows a dose- and time-dependent reduction of cell proliferation by Trypan Blue Exclusion Test in all cell lines both with free GlaB and HA-GlaB from lower to higher concentrations and from 24-hour to 96-hour incubation (p<0.05). Similarly, at the protein level, Gli1 knockdown, in a dose- and time-dependent manner, is demonstrated (p<0.05). Eventually, Wound healing assay preliminary data revelead a dose- and time-dependent decrease in wound edge reunification, leading to a lower migratory capacity. These data illustrate a better comprehension of a novel and putative way in the management of iCCA. Hedgheog pathway dysregulation is known to be correlated with the development and progression of various cancers, including iCCA. The accomplishment of this study lays the groundwork for in vivo pre-clinical studies of HA-encapsuled GlaB in iCCA
    corecore