66 research outputs found

    Protein Kinase C Activation Drives a Differentiation Program in an Oligodendroglial Precursor Model through the Modulation of Specific Biological Networks

    Get PDF
    Protein kinase C (PKC) activation induces cellular reprogramming and differentiation in various cell models. Although many effectors of PKC physiological actions have been elucidated, the molecular mechanisms regulating oligodendrocyte differentiation after PKC activation are still unclear. Here, we applied a liquid chromatography-mass spectrometry (LC-MS/MS) approach to provide a comprehensive analysis of the proteome expression changes in the MO3.13 oligodendroglial cell line after PKC activation. Our findings suggest that multiple networks that communicate and coordinate with each other may finally determine the fate of MO3.13 cells, thus identifying a modular and functional biological structure. In this work, we provide a detailed description of these networks and their participating components and interactions. Such assembly allows perturbing each module, thus describing its physiological significance in the differentiation program. We applied this approach by targeting the Rho-associated protein kinase (ROCK) in PKC-activated cells. Overall, our findings provide a resource for elucidating the PKC-mediated network modules that contribute to a more robust knowledge of the molecular dynamics leading to this cell fate transition

    Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine

    Get PDF
    In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown

    Direct analytical sample quality assessment for biomarker investigation: qualifying cerebrospinal fluid samples

    No full text
    Measurement of biochemical markers represents an important aid to clinicians in the early diagnosis and prognosis of neurological diseases. Many factors can contribute to increase the chances that a biomarkers study becomes successful. In a cerebrospinal fluid analysis (CSF), more than 84% of laboratory errors can be attributed to several pre-analytical variables that include CSF collection, storage, and freeze thawing cycles. In this concept paper, we focus on some critical issues arising from basic proteomics investigation in order to highlight some key elements of CSF quality control. Furthermore we propose a direct assessment of sample quality (DASQ) by applying a fast MALDI-TOF-MS methodology to evaluate molecular features of sample degradation and oxidation. We propose DASQ as a fast and simple initial step to be included in large-scale projects for neurological biomarkers studies. In fact, such a procedure will improved the development of standardized protocols in order to have well-characterized CSF biobanks. This article is protected by copyright. All rights reserved

    Protein profiling of Guillain-Barr\ue8 syndrome cerebrospinal fluid by two dimensional electrophoresis and mass spectrometry

    No full text
    Protein profiling of cerebrospinal fluid in Guillain-Barr\ue8 syndrome (GBS), an acute and immune-mediated disease affecting the peripheral nervous system, was performed by two-dimensional electrophoresis. Significant modulated spots in GBS patients vs. control groups (a group of multiple sclerosis patients and one of healthy donors) underwent MALDI-TOF/TOF investigation. Inflammation-related proteins, such as vitamin D-binding protein, beta-2 glycoprotein I (ApoH), and a complement component C3 isoform were up-regulated in GBS, whereas transthyretin (the monomer and the dimer forms), apolipoprotein E, albumin and five of its fragments were down-regulated. Then, we used an isoelectric-focusing-dinitrophenylhydrazine-based technique to analyse the extent of carbonylation and, as a result, of oxidative damage of GBS CSF proteome. We observed a major sensitivity to carbonylation for albumin and alpha-glycoprotein in inflammation and a selective increase of reactivity for a glycosylated Fab from an IgM globulin in GBS CSF. Our results add new proteins to candidate CSF features of GBS, and suggest that oxidative stress could contribute to the immunopathological mechanisms in this syndrome
    • …
    corecore