1,758 research outputs found

    Studies of the use of high-temperature nuclear heat from an HTGR for hydrogen production

    Get PDF
    The results of a study which surveyed various methods of hydrogen production using nuclear and fossil energy are presented. A description of these methods is provided, and efficiencies are calculated for each case. The process designs of systems that utilize the heat from a general atomic high temperature gas cooled reactor with a steam methane reformer and feed the reformer with substitute natural gas manufactured from coal, using reforming temperatures, are presented. The capital costs for these systems and the resultant hydrogen production price for these cases are discussed along with a research and development program

    The Impact of Bearing Conditions on the Behavior of Cold-Formed Steel Stud Assemblies

    Get PDF
    The objective of this study is to explore the structural response of cold-formed steel stud assemblies (i.e., stud and track) with partial bearing conditions. It is hypothesized that studs bearing under partial bearing conditions (i.e., not fully bearing on a concrete slab) may result in reduced axial capacities. Currently, the behavior of these systems on concrete slabs due to member instabilities is not well-understood, and cold-formed steel design specifications provide no guidance. This study provides an integral experimental and numerical investigation of the stability response of the studs under partial bearing conditions in order to quantify the reduction of their axial capacities. A variety of partial bearing conditions are considered in this study by parametrically varying edge (i.e., where the steel stud assembly is close to the concrete slab edge) and overhang (i.e., steel stud assembly is outside the edge) distances. The non-uniform bearing stress underneath the stud caused by concrete cracking, crushing, or a combination thereof is measured to relate with the reduction of the axial capacity of the stud. The results of this study will be used to develop design guidelines for stud wall assembly under non-uniform bearing conditions

    Can government-allocated land contribute to food security? Intrahousehold analysis of West Bengal’s Microplot allocation program

    Get PDF
    Secure land rights are a critical, but often overlooked, factor in achieving household food security and improved nutritional status in rural areas of developing countries. This study evaluates the impact of India’s land-allocation and registration program in West Bengal, a program that targets poor populations and promotes the inclusion of women’s names on land titles. We use mixed methods data collected between 2010 and 2012 to examine the program’s selection of beneficiaries and a set of outcomes that are expected to lay the foundation for future food security, as well as short-term food security indicators. Our results indicate that the program’s implementation at the block level allowed for considerable variation in the processes used to select beneficiaries, to demarcate plots, to distribute titles and to provide infrastructure support. Although we were unable to detect statistically significant program effects on current house hold food security, we find that the land-allocation and registration program has had an impact on a range of outcomes that are expected to lead to future food security: beneficiary households report stronger security, and they are more likely to take loans for agricultural purposes, to invest in agricultural improvements, and to involve women when making decisions related to food and agriculture. These effects vary with plot size—larger plots lead to larger benefits —and depend on whose names are included on the land documents; the effects are larger if women’s names are recorded on the land titles

    Generating Negatively Supercoiled DNA Using Dual-Trap Optical Tweezers

    Get PDF
    Many genomic processes lead to the formation of underwound (negatively supercoiled) or overwound (positively supercoiled) DNA. These DNA topological changes regulate the interactions of DNA-binding proteins, including transcription factors, architectural proteins and topoisomerases. In order to advance our understanding of the structure and interactions of supercoiled DNA, we recently developed a single-molecule approach called Optical DNA Supercoiling (ODS). This method enables rapid generation of negatively supercoiled DNA (with between <5% and 70% lower helical twist than nonsupercoiled DNA) using a standard dual-trap optical tweezers instrument. ODS is advantageous as it allows for combined force spectroscopy, fluorescence imaging, and spatial control of the supercoiled substrate, which is difficult to achieve with most other approaches. Here, we describe how to generate negatively supercoiled DNA using dual-trap optical tweezers. To this end, we provide detailed instructions on the design and preparation of suitable DNA substrates, as well as a step-by-step guide for how to control and calibrate the supercoiling density produced

    Constructing arrays of nucleosome positioning sequences using Gibson Assembly for single-molecule studies

    Get PDF
    As the basic building blocks of chromatin, nucleosomes play a key role in dictating the accessibility of the eukaryotic genome. Consequently, nucleosomes are involved in essential genomic transactions such as DNA transcription, replication and repair. In order to unravel the mechanisms by which nucleosomes can influence, or be altered by, DNA-binding proteins, single-molecule techniques are increasingly employed. To this end, DNA molecules containing a defined series of nucleosome positioning sequences are often used to reconstitute arrays of nucleosomes in vitro. Here, we describe a novel method to prepare DNA molecules containing defined arrays of the ‘601’ nucleosome positioning sequence by exploiting Gibson Assembly cloning. The approaches presented here provide a more accessible and efficient means to generate arrays of nucleosome positioning motifs, and facilitate a high degree of control over the linker sequences between these motifs. Nucleosomes reconstituted on such arrays are ideal for interrogation with single-molecule techniques. To demonstrate this, we use dual-trap optical tweezers, in combination with fluorescence microscopy, to monitor nucleosome unwrapping and histone localisation as a function of tension. We reveal that, although nucleosomes unwrap at ~20 pN, histones (at least histone H3) remain bound to the DNA, even at tensions beyond 60 pN

    Experimental Seismic Behavior of the CFS-NEES Building: System-Level Performance of a Full-Scale Two-Story Light Steel Framed Building

    Get PDF
    In the summer of 2013, testing of two full-scale cold-formed steel (CFS) framed buildings under seismic excitations took place at the Structural Engineering and Earthquake Simulation Lab (SEESL) at the University at Buffalo. Utilizing the twin shake tables, the two-story building specimens were subjected to ground motions from the 1994 Northridge earthquake. These experiments were conducted as a part of the CFS-NEES experimental effort in an attempt to advance cold-formed steel earthquake engineering and design. Two buildings were tested: the first, a specimen constructed with only structural components (CFS-framed gravity walls, shear walls, floor and roof diaphragms, with OSB sheathing on shear walls and diaphragms); the second began with an exact replica of the first building, but saw the addition of various non-structural systems such as gravity wall sheathing, full diaphragm sheathing, interior partition walls, and exterior weatherproofing. Prior to these experiments, little experimental data existed on full building system behavior for CFS framing. This paper presents results on full-system behavior, specifically examining: drifts, acceleration amplification, shear wall behavior, base shear, diaphragm flexibility, damping, and period of vibration. Comparison to the North American specification for CFS, and design recommendations are also provided

    Characterizaiton of Cold-formed Steel Shear Wall Behavior under Cyclic Loading for the CFS-NEES Building

    Get PDF
    The objective of this paper is to provide a full hysteretic characterization of OSB sheathed cold-formed steel (CFS) shear walls designed for use in the National Science Foundation funded Network for Earthquake Engineering Simulation (NEES) project: CFS-NEES (www.ce.jhu.edu/cfsnees). The shear walls were designed for a two-story ledger-framed building (i.e., the CFS-NEES building) that will undergo full-scale shake table testing at the University of Buffalo NEES site. Shear walls in real construction, such as the CFS-NEES building, have details that differ from the shear walls tested and provided for strength prediction in standards such as AISI-S213-07. Differences include: (a) ledger (rim track) members are attached across the interior face of the studs, (b) OSB panel seams, both horizontal and vertical, may not be aligned with the chord studs or only blocked with strap, (c) interior gypsum board is in place, (d) field studs may have a different thickness or grade from the chord studs, and other differences. In this work, these four highlighted differences (a-d) are specifically explored in a series of shear walls tests loaded via cyclic (CUREE) protocols to determine their hysteretic performance. The test results are compared with AISIS213-07 and hysteretic material characterizations utilizing an elastic-plastic model (EEEP) and a model capable of exhibiting pinching in the hysteretic loops (Pinching4). Recommendations are made with respect to modeling the shear walls

    Unravelling the mechanisms of Type 1A topoisomerases using single-molecule approaches

    Get PDF
    Topoisomerases are essential enzymes that regulate DNA topology. Type 1A family topoisomerases are found in nearly all living organisms and are unique in that they require single-stranded (ss)DNA for activity. These enzymes are vital for maintaining supercoiling homeostasis and resolving DNA entanglements generated during DNA replication and repair. While the catalytic cycle of Type 1A topoisomerases has been long-known to involve an enzyme-bridged ssDNA gate that allows strand passage, a deeper mechanistic understanding of these enzymes has only recently begun to emerge. This knowledge has been greatly enhanced through the combination of biochemical studies and increasingly sophisticated single-molecule assays based on magnetic tweezers, optical tweezers, atomic force microscopy and Förster resonance energy transfer. In this review, we discuss how single-molecule assays have advanced our understanding of the gate opening dynamics and strand-passage mechanisms of Type 1A topoisomerases, as well as the interplay of Type 1A topoisomerases with partner proteins, such as RecQ-family helicases. We also highlight how these assays have shed new light on the likely functional roles of Type 1A topoisomerases in vivo and discuss recent developments in single-molecule technologies that could be applied to further enhance our understanding of these essential enzymes

    Optical properties and electronic structure of β′−NiAl

    Get PDF
    The optical constants and their temperature derivatives have been determined for β′−NiAl from absorption and thermoreflectance measurements in the energy range of 0.2-4.4 eV. The results are interpreted using the self-consistent energy bands of Moruzzi, Williams, and Gelatt. By comparing a calculated joint density of states with ε2, the imaginary part of the dielectric function, good overall agreement is found between theory and experiment. In contrast to earlier analyses, it is found that the 2.5-eV peak in ε2 is primarily due to direct interband transitions terminating near the Fermi surface. This new interpretation of the 2.5-eV feature is discussed in relation to previously reported concentration effects and the rigid-band model
    • …
    corecore