147 research outputs found

    New Concepts for Quasi-Optical Structures for Use with Gyrotron Systems

    Get PDF

    Dephosphorization of Manganese Ore Raw Materials

    Get PDF
    The dephosphorization of manganese ores and concentrates in a reducing atmosphere is thermodynamically analyzed. It is shown that phosphorus can completely pass to a gas phase in a closed reaction system in a wide temperature range (1273–2073 K) at the amounts of a reducing gas (CO) that exceed the stoichiometric minimum required for reduction reactions. The gaseous products of reduction is found to contain phosphorus in the form of mainly polyatomic “heavy” molecular oxides, which can decrease the real effect of dephosphorization as compared to that obtained by equilibrium calculations because of kinetic factors. A thermodynamic simulation of a flow reaction system shows that almost complete transition of phosphorus to light gaseous substances (PO, P2) is thermodynamically possible at the temperatures that are close to the technological operation temperatures. This transition is provided by the ratio of the rate of formation of volatile phosphorus-containing substances to the rate of their removal from reaction regions. Keywords: manganese ores, manganese concentrates, phosphorus, carbon monoxide, reductio

    The endogenic neurosteroid system and its role in the pathogenesis and therapy of mental disorders

    Get PDF
    The article describes the process of neurosteroidogenesis and the effect of neurosteroids on listed receptorsin accordance with already available scientific data. In addition, this paper describes the specific role of various neurosteroids in the development of mental illnesses, including anxiety disorders, depression, and schizophreni

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future
    corecore