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Abstract A set of two corrugated polarizer mirrors is typically used in high-power electron
cyclotron resonance heating (ECRH) systems to provide the required polarization of the
ECRH output beam. The ohmic losses of these mirrors can significantly exceed the losses
of plane mirrors depending on the polarization of the incident beam with respect to the
orientation of the grooves. Since polarizer mirrors incorporated into miter bends of a corru-
gated waveguide line are limited in size, active water cooling can become critical in high-
power cw systems like the one for ITER. The ohmic loss of polarizer mirrors has been
investigated experimentally at high power. A strategy to minimize the losses for given mirror
geometries has been found.

Keywords Electron cyclotron resonance heating - Polarizer - Ohmic loss

1 Introduction

In modern high-power electron cyclotron resonance heating (ECRH) systems, the power
transmission capability may be limited by high losses in some components of the transmission
line. In corrugated HE11 waveguide lines, one of the critical elements are polarizer mirrors
inserted into miter bends. Typically, a set of two corrugated polarizer mirrors is applied to
provide the required polarization (usual elliptical) of the ECRH beam injected into the plasma.
For single frequency systems, it usually consists of an elliptical and a linear polarizer with
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effective groove depths corresponding to ~Ay/8 and =Ay/4 (universal polarizer) with Ay being
the free space wavelength [1-3]. Such a universal polarizer can provide any arbitrary polariza-
tion in the output beam of the transmission line. In quasi-optical transmission lines, these
polarizers can be made large [4, 5], but polarizers in miter bends of HE11 transmission lines
have a limited diameter and thus a very high incident power density. With increasing power and
pulse length, the ohmic loss of the polarizer mirrors cannot be neglected anymore. In particular,
for systems like in ITER with high-power beams of 1 MW and up to 3600 s pulse length,
effective cooling of these mirrors can become a serious issue.

The ohmic loss of corrugated polarizer mirrors has been calculated using a 2D FDTD
algorithm [6] and space harmonic calculations [2]. Cold tests with grooved polarizer mirrors
made out of copper have been performed using a quasi-optical three-mirror resonator [7]. In [2],
it was shown that the loss of such mirrors can vary considerably depending on their setting.

We present here high-power tests on similar polarizer mirrors made out of stainless steel
which were inserted into an HE11 miter bend. The measurements were performed using a
gyrotron of the ASDEX Upgrade (AUG) ECRH system [8] at 140 GHz. The measurements
with the corrugated polarizer mirrors were cross-calibrated with similar measurements using a
plane mirror made of the same material. A simple formalism could be revealed which allows the
calculation of the ohmic loss of each polarizer mirror for any given incident polarization and
rotation angle. In Chapter 4, we show that there are not more than four possible combinations of
the angular settings of the two mirrors of a universal polarizer for any wanted output polariza-
tion [9]. Using this formalism, the combination of polarizer angles resulting in the lowest
possible ohmic attenuation can be found for each required polarization of the output beam.

2 Experimental Arrangement

For the high-power tests, the two polarizer mirrors were fabricated out of stainless steel (VA
1.4311) in order to get an easily measurable high temperature difference together with a slow
heat transfer towards the mirror edges. The thickness of the test mirrors was 5 mm. The
polarizer mirrors have a sinusoidal corrugation with depth 0.8 and 0.57 mm, respectively, and
a corrugation period of 1.07 mm. For comparison, a plane disk, also with a thickness of 5 mm
of the same material, was prepared. These mirrors were, each one at a time, inserted into a 90°
miter bend of the AUG transmission line operating in air (Fig. 1). Their diameter is 140 mm
covering the 87-mm inner diameter of the corrugated waveguides. All mirrors under test were
equipped with a PT-100 platinum resistance temperature detector at the center of the back side
whose dimension is 2 X 2 mm, thus averaging over two corrugation periods. The sensitivity is
6°K/V. At the end of each AUG transmission line, the beam can be directed into a short-pulse
calorimetric load via another miter bend with directional coupler.

For the polarizer tests, one of the gyrotrons was operated at 140 GHz into such a
calorimetric load. For the tests, we applied an output power of 375 kW with a pulse length
of 50 ms resulting in easily measureable temperature differences of several degrees. The
response time of the PT-100 detectors on the back side is about 0.5 s. Figure 2 shows a typical
temperature signal following a 50-ms gyrotron pulse. The maximum is reached 4 s after the
pulse start. For the central position of the sensor, there is only a very small radial temperature
gradient, and therefore, the radial heat transfer is small compared to the heat transfer to the
backside, as can be seen in the slow decay of the temperature signal after reaching the
maximum compared to the fast rise of the temperature right after the 50-ms gyrotron pulse.
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Fig. 1 Measurement setup

The maximum temperature can thus be taken as a measure of the energy deposited on the front
mirror surface by the beam. After each pulse, the mirror was cooled back to room temperature
by pressurized air. Using the polarizer mirrors in the matching optics unit, any required input
polarization onto the miter bend mirror under test can be set.

3 Test Results
3.1 A. Plane Mirror

In order to calibrate the polarizer losses, a first series of measurements was performed with the
plane stainless steel mirror with a linear incident polarization which was rotated from =0° to
0 =180° using the polarizer mirrors in the MOU box. The angle ¢ is defined as the angle of
the incident electric field vector with respect to the incidence plane on the miter bend (Fig. 3).

AT, mV
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0 10 20 t s 30
pulse start

Fig. 2 Measured temperature sequence of the central PT-100 detector at a mirror under test
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Fig. 3 Definition of the polarization plane with respect to the miter bend mirror (fop, front view; bottom, top
view)

The result of the measurement is given in Fig. 4. For the data at ¢ =0° and ¢ =90°, we
have theoretical results [7] and

Ap—pp = aJ_/COS@, (1)
Ap=90° = LIL'COS@7

where © is the angle of incidence and
a. = 4Rs [ 2. (2)

The absorption coefficient at perpendicular incidence, © =0°, on a plane mirror. Ry is the
surface resistance, and Z; is the wave impedance.

In our case of a 90° miter bend, we have © =45°, and from the two measurements at ¢ =0°
and 90°, we can determine «, to correspond to a,,,,y=573 mV (respectively, 3.438 K). In the
following graphs, we normalize the measured AT values to a,,,y as

Fig. 4 Ohmic loss of a plane 900 1.5

stainless steel mirror in a 90° miter

bend (LD. =87 mm, f=140 GHz). AT,mV
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Anorm = AT[mV]/ajy). (3)

Neglecting radial diffusion we can determine the absorbed energy AE, per unit area in the
center of the mirror of thickness d as

AEy = d-c-p-AT. (4)

The incident power density po on the center of the mirror surface can be calculated from
pO:P/(R%r)-fp-ﬁ/z: 165.45 W/mmz, (5)

where P =375 kW is the total injected power, 2R =87 mm is the diameter of the waveguide,
V2 /2 is due to the 45° incidence on the mirror, and

R R ) 1
f,= | 2mrdr 2m(Jo(2.405¢/R) ) rdr=0.5 (Jo(2.4057))r-dr = 3.711(6)
[ ) (s ) =/ |

is the peaking factor for a HE11 wave. The energy AE, per unit area absorbed in the center of
the mirror during a pulse of 7= 50 ms is then

AEy = a-py-T. (7)

Together with Eq. (4), and using the data for stainless steel, heat capacity ¢=0.5 J/(g-K),
specific mass p=7.9 g/em’, and the value of AT=3.438 K corresponding to a,, we can
estimate the absorption coefficient as a, = 0.82 %, which gives for E-plane polarization (=
0°) ag=1.16 % and for H-plane polarization (¢ =90°) ay;=0.58 %. These estimated values
agree reasonably well with theory which gives 0.993 and 0.496 % for E-plane and H-plane
incidence, respectively [7, 10]. Note that some increase of the ohmic loss due to surface
roughness with respect to theory is expected.

3.2 B. Polarizer Mirrors

For the following description of the experiments, we introduce two coordinate systems. The
first, Fig. 5a, relates to the feeding waveguide with the z-axis aligned along the incident -
vector of the mirror under test and the x-axis lying in the incidence plane. The polarization of
an incident linearly polarized wave is given by the angle ¢ of the electric field vector with
respect to the x-axis. The other coordinate system, Fig. 5b, relates to the mirror under test with
the x2-z2-plane being the mirror surface, the x2-axis oriented perpendicular to the grooves, and
the z2-axis along the grooves. The orientation of the grooved mirror is described by the angle
« between the grooves and the incidence plane.

In Fig. 6, we show the measured data (dots) when inserting either the A/§ or the A/
4 mirror or the plane mirror into the miter bend. The lines are model calculations as
explained later. The data are normalized to the case of perpendicular incidence on to
a plane mirror as described above. The figures show a scan of the angle ¢ of a linear
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Fig. 5 Definitions of the angles ¢ and « defining polarization and groove orientation. Lefi, in feeding
waveguide; right, on the mirror under test

polarized incident wave, while the orientation « of the grooves of the mirror is
constant at either a=0 or 90°. In Fig. 7, the graphs show a scan of the groove

Fig. 6 Normalized absorption
coefficient as a function of the
angle ¢ of a linear polarized a
incident wave at constant groove norm
orientation angle o= 0° (top) or
90° (bottom). Dots, experimental
data; lines, model calculation;
green, plane mirror; blue, \/8-
mirror; red, A/4-mirror
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Fig. 7 Normalized absorption 3
coefficient as a function of the

groove orientation angle « at 25
constant linear incident ’
polarization angle ¢ =0° (red) or anorm
90° (blue) for the A/8-mirror (top) 2

and the A/4-mirror (bottom)
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angle «, while the angle ¢ of the incident linear polarization is constant at ¢ =0° or
90°.

There is no absorption coefficient a,,,,,, < 1. A prominent feature in all these curves is that
they fit to a dependence of cos(2¢p), respectively, cos(2a), suggesting a dependence on the
square of the incident field components, which scale as sing or sina.

3.3 C. Special Cases

For application to ECRH in fusion experiments, we need in general an elliptical polarization,
defined by the ellipticity ¢, the orientation of the ellipse 3 with respect to the confining
magnetic field, and the sense of rotation of the electric field r. To realize this in a waveguide
transmission line, a universal polarizer with two polarizer mirrors of ~A/8 and =A\/4 groove
depth, mounted in 90° miter bends, i.e., with an incidence angle of 45°, is required. For a
single frequency application (in this paper 140 GHz), there are up to four possible combina-
tions of their groove angles « for each output polarization. Examples are shown in Figs. 12 and
13. Similar results were obtained for broadband polarizers with a steeper incident angle (17.2°)
at 140 GHz with groove depths that corresponded to A/8 and A/4 at their design frequency of
122.5 GHz [9]. From the above measurements, we have to expect that these combinations
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Fig. 8 Arrangement of the two A4 mirror 2/8 mirror
polarizer mirrors for the
experimental examples and model
calculations

have different losses. In the following, we compare for a few examples for the losses for cases
with four possible combinations. To calculate the necessary combinations of mirror angles, we
assume the arrangement shown in Fig. 8 where the A/§-mirror is followed by the A/4-mirror.
All calculations are performed for incident angles of 45°.

The apparently complicated arrangement in Fig. 8 takes into account that in our
present setup, we have only one place where we can insert a rotatable polarizer mirror
into a miter bend. Therefore, we proceed in the following way: we calculate the
settings required for a two-mirror arrangement as in Fig. 8 with a linear polarized
incident field. Then, we insert the A/8 mirror, set it to the calculated orientation g,
and determine its normalized loss. Next, we insert the A/4 mirror, set it to the
calculated value of «,,, feed it with an elliptic input polarization corresponding to
the calculated output of the A/8 mirror, and determine its loss. This elliptic input
polarization can be set by the polarizer mirrors in the MOU box. The total loss is the
sum of the individual losses.

In Fig. 9, we see, for example, the case where we want as output a linear polarized
field in horizontal direction. The left figure is obtained with a linear polarized incident
field in p=0° direction (E-plane incidence), and the right figure with an incident field
in p=90° direction (H-plane incidence). The four possible settings in the first case
give absorption coefficients in the range 4.2 to 5.4. In the second case, the absorption
coefficients vary between 2.2 and 5. In order to verify that we get the proper output
polarization, we also recorded the detector signal obtained at the directional coupler at
the end of the transmission line (Fig. 1) which must be constant in all eight cases.

In Fig. 10, we show an example for an elliptical output polarization with £=0.418,
(3=76.4°, and r=—1, again with a linear input polarization either horizontal or vertical. Here

6 SO—— L e e
Scr\ e 5 1

] a ]
norm * * norm, /?

L
3 T > 17\\ .................... ;’
5 ]
1 F ] 1 e P
of ] 0
1 2 3 4 1 2 3 cotting *
input: linear horizontal  Setting input: linear vertical 9

output: linear, g =0° output: linear, g =0°

Fig. 9 Measured and calculated normalized losses for the four possible settings leading to a linear horizontal
output polarization. Leff, horizontal linear input; right, vertical linear input; dots, experimental data; /ines, model
calculation; blue, N/8-mirror; green, N/4-mirror; red, sum; brown, detector signal
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Fig. 10 Measured and calculated normalized losses for the four possible settings leading to an elliptical output
polarization. Left, horizontal linear input; right, vertical linear input; dots, experimental data; /ines, model
calculation; blue, N/8-mirror; green, AN/4-mirror; red, sum; brown, detector signal

too, we see a variation of the absorption coefficients in the range of 2.9 to 4.7 for the different
possible settings.

We see a proper choice among the four possible mirror settings can greatly reduce
the heat load on the polarizer mirrors and thus increase the power capability of the
transmission line.

4 Model Calculation

As mentioned already in Chapter 2, the cos(2¢) and cos(2a) dependencies of the losses
suggest that they can be described as depending on the square of the incident field compo-
nents. We therefore make an empirical Ansatz:

duorm (v, ¢) = A-EL + B-E> + C-H? + D-H?, (8)

considering only the tangential fields as defined for the mirror coordinate system shown in
Fig. 5. We also make the assumption that a calculation based on infinite plane waves is a good
approximation for the center part of the beam.

The relation between the incident fields in the waveguide coordinate system and the
tangential fields in the mirror system is

1
E, = Eycosasing + 5 \/iEosinacos¢,
1
E. = Eysinasing— 5 V2Ecosacose,
1
H, = Hocosacos¢>—§ \/EHosinasimb,

. 1 .
H, = Hysinacosp + 5 V2H ycosasing,

where E, and Hj, are the field amplitudes in the waveguide, and the factor v/2/2 is due to the
45° incidence on the mirror.
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This relation simplifies for a=0° or 90° and for ¢ =0° or 90°. Inserting this into Eq. (8)
and setting Eg=Hy=1, we get:
For a=0° and p=0°:

1

0+ EB +C+0= Anorm,0°,0° -

For a=0° and ¢ =90°:
1

A+0+0+ ED = Qporm,0°,90° -
For a=90° and ¢ =0

1

EA +0+0+D= Anorm,90°,0° -
For av=90° and ¢ =90°:

1
0+B+ 5 C+0= Anorm,90° 90° -

Thus, from our measurements of a,,,, at these « and ¢ combinations, we can
derive the loss coefficients A, B, C, and D. We have done this for the data of Fig. 6
with the result given in Table 1.

Using the coefficients in Table 1 in Eq. (8), we can calculate the o and ¢
dependencies of the losses of the respective mirrors. The results are shown in
Figs. 4, 6, and 7 by the lines named model calculation. We see an astonishingly
good agreement with this simple model. In Fig. 11, we show once more the
calculated results of Figs. 4, 6, and 7 together with the detailed contributions of
E?, H?, and sz. The contribution of EZ2 is not shown because it is in all cases
negligibly small. This makes sense because E, must vanish along the ridges of the
grooves and cannot excite a wave inside the grooves.

For the plane mirror, the result is clear: The surface current is proportional to the
squared tangential magnetic field, which at p=0° incidence has the full amplitude
Ho; while at ¢ =90°, the tangential x-component has only a magnitude of 1/2-v/2-
Hy. And there is no E, contribution as there is no tangential electric field. The
corrugated mirror which behaves somewhat similar to the plane mirror is the A/8-
mirror with a=90°, but the H, and H, contributions are higher than in the plane
mirror case and there is a small E, contribution. In the other cases, the E, contri-
bution is considerably higher. All these components can excite a wave propagating
in the grooves, thus increasing the losses with respect to the plane mirror.

Table 1 Loss coefficients for the plane and corrugated mirrors under test

Plane mirror A/8-mirror M4-mirror
A 0 0.60 2.83
B 0 0.01 0.01
C 1.41 2.01 2.45
D 1.41 2.25 16
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0 30 4] 90 120 150 180 0 30 60 90 120 150 180)

/4 mirror, @ =0° ¢, 714 mirror, « = 90° '

Fig. 11 Contributions of AEZ (blue), C-H,? (green), and D-H,? (brown) t0 Gyem, (red) for a plane mirror (top),
the A/8-mirror with = 0° and a=90° (center), and the A/4-mirror with «=0° and o =90° (bottom)

Our model can also be applied to the special cases of Chapter 3.3 with
combinations of A/8 and A/4 mirrors. The results are also shown in Figs. 9 and
10 and reproduce the experimental data pretty well. The simple model given in
Eq. (8) is thus well suited to calculate the losses of a pair of corrugated mirrors for
any setting and for any geometrical arrangement, once the coefficients A, B, C, and
D for the individual mirrors are determined. It can be integrated in a polarization
matrix code as described in [9].

Based on this finding, we can now also calculate 2D plots of the losses depending on
the rotation angles « of the A/§ and A/4 mirrors. In Fig. 12, we show, as an example,
calculations of the output polarization for an input with horizontal linear polarization and
the configuration given in Fig. 8. Shown are 2D plots of ellipticity ¢, orientation (3,
rotation r, and losses a,,,,». These figures are similar to the ones given in [9], but now
including losses. The data points in these graphs show the possible settings for a scan

@ Springer



202 J Infrared Milli Terahz Waves (2017) 38:191-205

a,, (deg.)

060" ."‘O‘ CI_OCK
o

090 g 60" wise
150 i e ctr.

o clock

120 1208 wise
§ 150-2
2 9% oo
SE o
60 e

Fig. 12 2D plots of the output of a two-mirror polarizer fed by a horizontal linear input polarization. a Ellipticity
e. b Orientation 3. ¢ Rotation 7. d Losses a,,,,.,- The dots represent a scan of the orientation [ at constant ¢ =0.2
and r=1. As an example, the black dots highlight the four solutions for 5=30°

of the orientation (3 from 0 to 180° of the output polarization ellipse with £=0.2 and
rotation r=+1 (ctr. clockwise) with a horizontal linear input polarization. The dots
represent solutions for the required output polarization with a cross-polarization
content <0.1 % of the total power.

In Fig. 13, we show 2D plots for different ellipticities ¢, the dots again
representing a (3-scan. We see that at low ellipticities of e=0 and 0.2, there are
four solutions for the mirror settings at any value of (3, whereas at the ellipticities
€=0.4 and 0.6, we find for some (-values only two solutions. As an example, the
black dots show the solutions for =60°.

In Fig. 14, we consider two cases with four solutions for which we show only
plots of the losses. The data points are again for a scan of the orientation 3 from
0° to 180°, but for the ellipticities £=0 (linear) and £=0.2, and both for a linear
input polarization either horizontal or vertical.

We see that the four possible settings, as shown in Fig. 14, to realize a
wanted output polarization have quite different total loss, both for the linear and
the elliptical output case. Lower loss can be obtained for a vertical input
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Fig. 13 2D plots of the calculated ellipticity at the output of a two-mirror polarizer fed by a horizontal linear
input polarization. The dots represent a scan of the orientation 3 at rotation = 1for constant ellipticties of a ¢ =
0.2,be=0.2,c e=0.4, and d e=0.6. As an example, the black dots highlight the solutions for 3= 60°

polarization (H-plane incidence). This result is, however, true only for the polarizer
arrangement, Fig. 8, as discussed here.

5 Discussion

Our model is not a theoretical one, rather an empirical one. The coefficients A, B,
C, and D for each mirror were obtained experimentally. Normalized to perpendic-
ular incidence on a plane mirror they are valid for any material, not just stainless
steel as used here. But they will depend on the corrugation parameters like profile
shape, depth, and periodicity [7]. Nevertheless, they give a guideline how to choose
a setting of the polarizer mirrors which leads to lower losses. A numerical code for
polarizers like the one described in [6] should be able to calculate the coefficients
A, B, C, and D where the calculation of only four special cases according to Eq. (8)
is necessary. Experimentally, the coefficients can also be obtained at low power in a
three-mirror-resonator setup as in [7]. In such a setup, only cases with linear
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37

105¢

= 00120

0O 30 60 90 120 150 180 0 30 60 9 120 150 180
¢, (deg.) a, (deg)

Fig. 14 2D plots of the total polarizer loss as function of the two-mirror settings cv. The data points show a scan
of the orientation 3 of the output polarization ellipse from 0° to 180° at constant ellipticity € and constant rotation
. As an example, the black dots highlight the four solutions for 5= 60°. a Input, horizontal linear; output, £ =0,
r==1 (lin. pol.). b Input, vertical linear; output, € =0, »==+1 (lin. pol.). ¢ Input, horizontal linear; output, € =0.2,
r=+1 (ell. pol.). d Input, vertical linear; output, € =0.2, r=+1 (ell. pol.)

polarization equal for input and output, and thus also only cases with parallel
or perpendicular orientation of the grooves w.r.t., the E-field vector can be
studied. These are just the cases required to determine the four parameters A,
B, C, and D.

Applied to a universal polarizer consisting of two corrugated mirrors as done
above the result for the total losses will also depend on the specific arrangement:
We used here the arrangement in Fig. 8, but other arrangements where the two
incidence planes are parallel or perpendicular to each other can also be treated
with this model in the same way. One needs only to know the parameters A, B,
C, and D for the applied mirrors. In general, for the proper choice of the mirror
settings, we need also to consider the changes of the polarization along the
downstream transmission line including the launcher mirror. There is no doubt
that in the case of a complex but fixed transmission line geometry, there is also
an optimum position for the polarizer mirrors which can be found using this
model.
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