499 research outputs found
Risk factors for Mycobacterium tuberculosis infection in 2-4 year olds in a rural HIV-prevalent setting.
BACKGROUND: Mycobacterium tuberculosis infection in children acts as a sentinel for infectious tuberculosis. OBJECTIVE: To assess risk factors associated with tuberculous infection in pre-school children. METHOD: We conducted a population-wide tuberculin skin test (TST) survey from January to December 2012 in Malawi. All children aged 2-4 years residing in a demographic surveillance area were eligible. Detailed demographic data, including adult human immunodeficiency virus (HIV) status, and clinical and sociodemographic data on all diagnosed tuberculosis (TB) patients were available. RESULTS: The prevalence of M. tuberculosis infection was 1.1% using a TST induration cut-off of 15 mm (estimated annual risk of infection of 0.3%). The main identifiable risk factors were maternal HIV infection at birth (adjusted OR [aOR] 3.6, 95%CI 1.1-12.2), having three or more adult members in the household over a lifetime (aOR 2.4, 95%CI 1.2-4.8) and living in close proximity to a known case of infectious TB (aOR 1.6, 95%CI 1.1-2.4), modelled as a linear variable across categories (>200 m, 100-200 m, <100 m, within household). Less than 20% of the infected children lived within 200 m of a known diagnosed case. CONCLUSION: Household and community risk factors identified do not explain the majority of M. tuberculosis infections in children in our setting
Natural variation in immune responses to neonatal mycobacterium bovis bacillus calmette-guerin (BCG) vaccination in a cohort of Gambian infants
Background There is a need for new vaccines for tuberculosis (TB) that protect against adult pulmonary disease in regions where BCG is not effective. However, BCG could remain integral to TB control programmes because neonatal BCG protects against disseminated forms of childhood TB and many new vaccines rely on BCG to prime immunity or are recombinant strains of BCG. Interferon-gamma (IFN-) is required for immunity to mycobacteria and used as a marker of immunity when new vaccines are tested. Although BCG is widely given to neonates IFN- responses to BCG in this age group are poorly described. Characterisation of IFN- responses to BCG is required for interpretation of vaccine immunogenicity study data where BCG is part of the vaccination strategy. Methodology/Principal Findings 236 healthy Gambian babies were vaccinated with M. bovis BCG at birth. IFN-, interleukin (IL)-5 and IL-13 responses to purified protein derivative (PPD), killed Mycobacterium tuberculosis (KMTB), M. tuberculosis short term culture filtrate (STCF) and M. bovis BCG antigen 85 complex (Ag85) were measured in a whole blood assay two months after vaccination. Cytokine responses varied up to 10 log-fold within this population. The majority of infants (89-98% depending on the antigen) made IFN- responses and there was significant correlation between IFN- responses to the different mycobacterial antigens (Spearman’s coefficient ranged from 0.340 to 0.675, p=10-6-10-22). IL-13 and IL-5 responses were generally low and there were more non-responders (33-75%) for these cytokines. Nonetheless, significant correlations were observed for IL-13 and IL-5 responses to different mycobacterial antigens Conclusions/Significance Cytokine responses to mycobacterial antigens in BCG-vaccinated infants are heterogeneous and there is significant inter-individual variation. Further studies in large populations of infants are required to identify the factors that determine variation in IFN- responses
Beyond chance? The persistence of performance in online poker
A major issue in the widespread controversy about the legality of poker and the appropriate taxation of winnings is whether poker should be considered a game of skill or a game of chance. To inform this debate we present an analysis into the role of skill in the performance of online poker players, using a large database with hundreds of millions of player-hand observations from real money ring games at three different stakes levels. We find that players whose earlier profitability was in the top (bottom) deciles perform better (worse) and are substantially more likely to end up in the top (bottom) performance deciles of the following time period. Regression analyses of performance on historical performance and other skill-related proxies provide further evidence for persistence and predictability. Simulations point out that skill dominates chance when performance is measured over 1,500 or more hands of play
Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity
Background: Environmental mycobacteria (EM) include species commonly found in various terrestrial and aquatic environments, encompassing animal and human pathogens in addition to saprophytes. Approximately 150 EM species can be separated into fast and slow growers based on sequence and copy number differences of their 16S rRNA genes. Cultivation methods are not appropriate for diversity studies; few studies have investigated EM diversity in soil despite their importance as potential reservoirs of pathogens and their hypothesized role in masking or blocking M. bovis BCG vaccine.
Methods: We report here the development, optimization and validation of molecular assays targeting the 16S rRNA gene to assess diversity and prevalence of fast and slow growing EM in representative soils from semi tropical and temperate areas. New primer sets were designed also to target uniquely slow growing mycobacteria and used with PCR-DGGE, tag-encoded Titanium amplicon pyrosequencing and quantitative PCR.
Results: PCR-DGGE and pyrosequencing provided a consensus of EM diversity; for example, a high abundance of pyrosequencing reads and DGGE bands corresponded to M. moriokaense, M. colombiense and M. riyadhense. As expected pyrosequencing provided more comprehensive information; additional prevalent species included M. chlorophenolicum, M. neglectum, M. gordonae, M. aemonae. Prevalence of the total Mycobacterium genus in the soil samples ranged from 2.3×107 to 2.7×108 gene targets g−1; slow growers prevalence from 2.9×105 to 1.2×107 cells g−1.
Conclusions: This combined molecular approach enabled an unprecedented qualitative and quantitative assessment of EM across soil samples. Good concordance was found between methods and the bioinformatics analysis was validated by random resampling. Sequences from most pathogenic groups associated with slow growth were identified in extenso in all soils tested with a specific assay, allowing to unmask them from the Mycobacterium whole genus, in which, as minority members, they would have remained undetected
Adsorption of myelin basic protein on model myelin membranes reveals weakening of van der Waals interactions in a lipid ratio-dependent manner
Myelin is a lipid-rich membrane that insulates axons, providing support and ensuring efficient nerve impulse conduction. Disruption of this sheath, or demyelination, impairs neural transmission and underlies symptoms like vision loss and muscle weakness in multiple sclerosis (MS). Despite extensive studies using in vitro and in vivo models, the molecular mechanisms driving demyelination remain incompletely understood. To investigate the role of myelin basic protein (MBP) in membrane stability, we prepared model myelin membranes (MMMs) from lipids expectedly undergoing gel-to-fluid phase transition, mimicking both normal and altered myelin, with and without MBP. Differential scanning calorimetry (DSC) revealed that MBP suppresses the main phase transition in normal MMMs, unlike in modified MMMs. FTIR spectra showed strengthening of van der Waals interactions in normal MMMs with MBP upon heating and opposite effects in the analogous modified MMM system. Additionally, phosphate groups were identified as critical sites for MBP–lipid interactions. Circular dichroism (CD) spectroscopy suggests that MBP adopts helical structures that penetrate the bilayer of normal MMMs. These findings offer new insights into the molecular-level interactions between MBP and myelin membranes, with implications for understanding demyelination in diseases like MS. Keywords: model myelin membranes; myelin basic protein; van der Waals interactions; FTIR and CD spectroscopy; differential scanning calorimetry (DSC
A computational study of the heterogeneous synthesis of hydrazine on Co3Mo3N
Periodic and molecular density functional theory calculations have been applied to elucidate the associative mechanism for hydrazine and ammonia synthesis in the gas phase and hydrazine formation on Co3Mo3N. We find that there are two activation barriers for the associative gas phase mechanism with barriers of 730 and 658 kJ/mol, corresponding to a hydrogenation step from N2 to NNH2 and H2NNH2 to H3NNH3, respectively. The second step of the mechanism is barrierless and an important intermediate, NNH2, can also readily form on Co3Mo3N surfaces via the Eley–Rideal chemisorption of H2 on a pre-adsorbed N2 at nitrogen vacancies. Based on this intermediate a new heterogeneous mechanism for hydrazine synthesis is studied. The highest relative barrier for this heterogeneous catalysed process is 213 kJ/mol for Co3Mo3N containing nitrogen vacancies, clearly pointing towards a low-energy process for the synthesis of hydrazine via a heterogeneous catalysis route
Enzyme sequestration as a tuning point in controlling response dynamics of signalling networks
Signalling networks result from combinatorial interactions among many enzymes and scaffolding proteins. These complex systems generate response dynamics that are often essential for correct decision-making in cells. Uncovering biochemical design principles that underpin such response dynamics is a prerequisite to understand evolved signalling networks and to design synthetic ones. Here, we use in silico evolution to explore the possible biochemical design space for signalling networks displaying ultrasensitive and adaptive response dynamics. By running evolutionary simulations mimicking different biochemical scenarios, we find that enzyme sequestration emerges as a key mechanism for enabling such dynamics. Inspired by these findings, and to test the role of sequestration, we design a generic, minimalist model of a signalling cycle, featuring two enzymes and a single scaffolding protein. We show that this simple system is capable of displaying both ultrasensitive and adaptive response dynamics. Furthermore, we find that tuning the concentration or kinetics of the sequestering protein can shift system dynamics between these two response types. These empirical results suggest that enzyme sequestration through scaffolding proteins is exploited by evolution to generate diverse response dynamics in signalling networks and could provide an engineering point in synthetic biology applications
Resolving the neural circuits of anxiety
Although anxiety disorders represent a major societal problem demanding new therapeutic targets, these efforts have languished in the absence of a mechanistic understanding of this subjective emotional state. While it is impossible to know with certainty the subjective experience of a rodent, rodent models hold promise in dissecting well-conserved limbic circuits. The application of modern approaches in neuroscience has already begun to unmask the neural circuit intricacies underlying anxiety by allowing direct examination of hypotheses drawn from existing psychological concepts. This information points toward an updated conceptual model for what neural circuit perturbations could give rise to pathological anxiety and thereby provides a roadmap for future therapeutic development.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (NIH Director’s New Innovator Award DP2-DK-102256-01)National Institute of Mental Health (U.S.) (NIH) R01-MH102441-01)JPB Foundatio
Modular Composition of Gene Transcription Networks
Predicting the dynamic behavior of a large network from that of the composing modules is a central problem in systems and synthetic biology. Yet, this predictive ability is still largely missing because modules display context-dependent behavior. One cause of context-dependence is retroactivity, a phenomenon similar to loading that influences in non-trivial ways the dynamic performance of a module upon connection to other modules. Here, we establish an analysis framework for gene transcription networks that explicitly accounts for retroactivity. Specifically, a module's key properties are encoded by three retroactivity matrices: internal, scaling, and mixing retroactivity. All of them have a physical interpretation and can be computed from macroscopic parameters (dissociation constants and promoter concentrations) and from the modules' topology. The internal retroactivity quantifies the effect of intramodular connections on an isolated module's dynamics. The scaling and mixing retroactivity establish how intermodular connections change the dynamics of connected modules. Based on these matrices and on the dynamics of modules in isolation, we can accurately predict how loading will affect the behavior of an arbitrary interconnection of modules. We illustrate implications of internal, scaling, and mixing retroactivity on the performance of recurrent network motifs, including negative autoregulation, combinatorial regulation, two-gene clocks, the toggle switch, and the single-input motif. We further provide a quantitative metric that determines how robust the dynamic behavior of a module is to interconnection with other modules. This metric can be employed both to evaluate the extent of modularity of natural networks and to establish concrete design guidelines to minimize retroactivity between modules in synthetic systems.United States. Air Force Office of Scientific Research (FA9550-12-1-0129
The evolution of sex-specific virulence in infectious diseases
Fatality rates of infectious diseases are often higher in men than women. Although this difference is often attributed to a stronger immune response in women, we show that differences in the transmission routes that the sexes provide can result in evolution favouring pathogens with sex-specific virulence. Because women can transmit pathogens during pregnancy, birth or breast-feeding, pathogens adapt, evolving lower virulence in women. This can resolve the long-standing puzzle on progression from Human T-cell Lymphotropic Virus Type 1 (HTLV-1) infection to lethal Adult T-cell Leukaemia (ATL); a progression that is more likely in Japanese men than women, while it is equally likely in Caribbean women and men. We argue that breastfeeding, being more prolonged in Japan than in the Caribbean, may have driven the difference in virulence between the two populations. Our finding signifies the importance of investigating the differences in genetic expression profile of pathogens in males and females
- …
