81 research outputs found
Always Affecting the Wrong People? The Impact of US Sanctions on Poverty
In this paper, we analyze the effect of US economic sanctions on the target countries' poverty gap during the period 1978-2011. Econometrically, we employ a nearest neighbor matching approach to account for differences in the countries' economic and political environment and the likelihood of being exposed to US sanctions. Our results indicate that US sanctions are indeed affecting the wrong people as we observe a 2.3-5.1 percentage points (pp) larger poverty gap in sanctioned countries compared to their nearest neighbors. Severe sanctions, such as fuel embargoes, trade restrictions, the freezing of assets, or embargoes on most or all economic activity are particularly detrimental and lead to an increase in the poverty gap by 6.1-7.4 pp
Leaf area estimation of cassava from linear dimensions
ABSTRACT The objective of this study was to determine predictor models of leaf area of cassava from linear leaf measurements. The experiment was carried out in greenhouse in the municipality of Botucatu, São Paulo state, Brazil. The stem cuttings with 5-7 nodes of the cultivar IAC 576-70 were planted in boxes filled with about 320 liters of soil, keeping soil moisture at field capacity, monitored by puncturing tensiometers. At 80 days after planting, 140 leaves were randomly collected from the top, middle third and base of cassava plants. We evaluated the length and width of the central lobe of leaves, number of lobes and leaf area. The measurements of leaf areas were correlated with the length and width of the central lobe and the number of lobes of the leaves, and adjusted to polynomial and multiple regression models. The linear function that used the length of the central lobe LA = -69.91114 + 15.06462L and linear multiple functions LA = -69.9188 + 15.5102L + 0.0197726K - 0.0768998J or LA = -69.9346 + 15.0106L + 0.188931K - 0.0264323H are suitable models to estimate leaf area of cassava cultivar IAC 576-70
30-Day morbidity and mortality of bariatric metabolic surgery in adolescence during the COVID-19 pandemic – The GENEVA study
Background: Metabolic and bariatric surgery (MBS) is an effective treatment for adolescents with severe obesity. Objectives: This study examined the safety of MBS in adolescents during the coronavirus disease 2019 (COVID-19) pandemic. Methods: This was a global, multicentre and observational cohort study of MBS performed between May 01, 2020, and October 10,2020, in 68 centres from 24 countries. Data collection included in-hospital and 30-day COVID-19 and surgery-specific morbidity/mortality. Results: One hundred and seventy adolescent patients (mean age: 17.75 ± 1.30 years), mostly females (n = 122, 71.8%), underwent MBS during the study period. The mean pre-operative weight and body mass index were 122.16 ± 15.92 kg and 43.7 ± 7.11 kg/m2, respectively. Although majority of patients had pre-operative testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (n = 146; 85.9%), only 42.4% (n = 72) of the patients were asked to self-isolate pre-operatively. Two patients developed symptomatic SARS-CoV-2 infection post-operatively (1.2%). The overall complication rate was 5.3% (n = 9). There was no mortality in this cohort. Conclusions: MBS in adolescents with obesity is safe during the COVID-19 pandemic when performed within the context of local precautionary procedures (such as pre-operative testing). The 30-day morbidity rates were similar to those reported pre-pandemic. These data will help facilitate the safe re-introduction of MBS services for this group of patients
30-day morbidity and mortality of sleeve gastrectomy, Roux-en-Y gastric bypass and one anastomosis gastric bypass: a propensity score-matched analysis of the GENEVA data
Background: There is a paucity of data comparing 30-day morbidity and mortality of sleeve gastrectomy (SG), Roux-en-Y gastric bypass (RYGB), and one anastomosis gastric bypass (OAGB). This study aimed to compare the 30-day safety of SG, RYGB, and OAGB in propensity score-matched cohorts. Materials and methods: This analysis utilised data collected from the GENEVA study which was a multicentre observational cohort study of bariatric and metabolic surgery (BMS) in 185 centres across 42 countries between 01/05/2022 and 31/10/2020 during the Coronavirus Disease-2019 (COVID-19) pandemic. 30-day complications were categorised according to the Clavien–Dindo classification. Patients receiving SG, RYGB, or OAGB were propensity-matched according to baseline characteristics and 30-day complications were compared between groups. Results: In total, 6770 patients (SG 3983; OAGB 702; RYGB 2085) were included in this analysis. Prior to matching, RYGB was associated with highest 30-day complication rate (SG 5.8%; OAGB 7.5%; RYGB 8.0% (p = 0.006)). On multivariate regression modelling, Insulin-dependent type 2 diabetes mellitus and hypercholesterolaemia were associated with increased 30-day complications. Being a non-smoker was associated with reduced complication rates. When compared to SG as a reference category, RYGB, but not OAGB, was associated with an increased rate of 30-day complications. A total of 702 pairs of SG and OAGB were propensity score-matched. The complication rate in the SG group was 7.3% (n = 51) as compared to 7.5% (n = 53) in the OAGB group (p = 0.68). Similarly, 2085 pairs of SG and RYGB were propensity score-matched. The complication rate in the SG group was 6.1% (n = 127) as compared to 7.9% (n = 166) in the RYGB group (p = 0.09). And, 702 pairs of OAGB and RYGB were matched. The complication rate in both groups was the same at 7.5 % (n = 53; p = 0.07). Conclusions: This global study found no significant difference in the 30-day morbidity and mortality of SG, RYGB, and OAGB in propensity score-matched cohorts
Economic and Environmental Contributions of Declaration of the Marmara Region as Emission Control Area (ECA)
Optimisation of a solid oxide fuel cell reformer using surrogate modelling, design of experiments and computational fluid dynamics
The present paper proposes a trio approach including surrogate modelling, design of experiments and computational fluid dynamics. An experimentally validated 3D continuum model has been used in the aid to optimise the performance, weight and the associated manufacturing costs of a plate type pre-reformer. The effect of plate number, plate porosity, wire mesh porosity and alternative materials on the pre-reformer performance has been studied in detail using a D-optimal experimental design plan and computational fluid dynamics. Multi-regression analyses depict that the number of reformer plates has the greatest potential for optimisation. A surrogate model has been derived and employed to perform rapid process and design optimisations. Results show that the methane reforming can be 40% increased by reducing the pre-reformer plate number to half of the actual value. A mass reduction of 50%, associated with a saving of 50% may be enabled. The surrogate model is proven to be a powerful tool to aid in reduced physical prototype costs and product development time. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved
Numerical Modelling and Experimental Validation of a Planar Type Pre-reformer in SOFC Technology
A computational model of the Julich type pre-reformer and its experimental validation used in solid oxide fuel cells (SOFCs) is introduced. A continuum modelling approach has been attended and its feasibility verified. The fluid flow, heat transfer and chemical reacting species transport within the pre-reformer are numerically solved using 3D computational fluid dynamics (CFD) based on the finite volume method. The model considers the typical sub-components of the pre-reformer including the solid frame, air channels, catalyst and the wire mesh structures. Experimental measurements are used to supply appropriate boundary conditions for the simulations. The predicted results of the simulations are experimentally validated using thermocouples and gas chromatography. The results show good agreement, implying that the proposed model is an invaluable tool that can be used to reduce costly experiments in the design and process optimisation of the pre-reformer. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved
Hierarchical 3D Multiphysics Modelling in the Design and Optimisation of SOFC System Components
This paper presents a novel bottom-up modelling approach to aid in the design and optimisation of the Research Centre Julich type integrated module components. The approach is demonstrated by employing the air pre-heater component. A feasibility study considering the thermo fluid, thermo mechanical behaviour of the physical air pre-heater design compared to a simplified design is introduced. Analogue design simplifications are performed to the afterburner and pre-reformer components. The results reveal that a simplified design can be feasible for thermo fluid flow analyses, but are not representative for mechanical analyses. The integrated module considering the simplified system components is simulated in 3D, considering the multiphysics that occur within each component. The predictions of the air pre-heater component obtained from the integrated module analysis are compared to the stand-alone air pre-heater simulation results. The results are in very good agreement. The approach is proven to be useful for the optimisation of the integrated module. Moreover, the investigation of local processes, critical regions can be visualised. The methodology demonstrates the effective simulation of large scale systems in 3D. Copyright (C) 2010, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved
Design and Optimization of SOFC System Components using a Trio Approach: Measurements, Design of Experiments and 3D Computational Fluid Dynamics
- …
