848 research outputs found
Conformal Field Theories in Fractional Dimensions
We study the conformal bootstrap in fractional space-time dimensions,
obtaining rigorous bounds on operator dimensions. Our results show strong
evidence that there is a family of unitary CFTs connecting the 2D Ising model,
the 3D Ising model, and the free scalar theory in 4D. We give numerical
predictions for the leading operator dimensions and central charge in this
family at different values of D and compare these to calculations of phi^4
theory in the epsilon-expansion.Comment: 11 pages, 4 figures - references updated - one affiliation modifie
Simplifying instanton corrections to N=4 SYM correlators
This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited
Massive Gravity Theories and limits of Ghost-free Bigravity models
We construct a class of theories which extend New Massive Gravity to higher
orders in curvature in any dimension. The lagrangians arise as limits of a new
class of bimetric theories of Lovelock gravity, which are unitary theories free
from the Boulware-Deser ghost. These Lovelock bigravity models represent the
most general non-chiral ghost-free theories of an interacting massless and
massive spin-two field in any dimension. The scaling limit is taken in such a
way that unitarity is explicitly broken, but the Boulware-Deser ghost remains
absent. This automatically implies the existence of a holographic -theorem
for these theories. We also show that the Born-Infeld extension of New Massive
Gravity falls into our class of models demonstrating that this theory is also
free of the Boulware-Deser ghost. These results extend existing connections
between New Massive Gravity, bigravity theories, Galileon theories and
holographic -theorems.Comment: 11+5 page
Holographic studies of quasi-topological gravity
Quasi-topological gravity is a new gravitational theory including
curvature-cubed interactions and for which exact black hole solutions were
constructed. In a holographic framework, classical quasi-topological gravity
can be thought to be dual to the large limit of some non-supersymmetric
but conformal gauge theory. We establish various elements of the AdS/CFT
dictionary for this duality. This allows us to infer physical constraints on
the couplings in the gravitational theory. Further we use holography to
investigate hydrodynamic aspects of the dual gauge theory. In particular, we
find that the minimum value of the shear-viscosity-to-entropy-density ratio for
this model is .Comment: 45 pages, 6 figures. v2: References adde
Comments on Holographic Entanglement Entropy and RG Flows
Using holographic entanglement entropy for strip geometry, we construct a
candidate for a c-function in arbitrary dimensions. For holographic theories
dual to Einstein gravity, this c-function is shown to decrease monotonically
along RG flows. A sufficient condition required for this monotonic flow is that
the stress tensor of the matter fields driving the holographic RG flow must
satisfy the null energy condition over the holographic surface used to
calculate the entanglement entropy. In the case where the bulk theory is
described by Gauss-Bonnet gravity, the latter condition alone is not sufficient
to establish the monotonic flow of the c-function. We also observe that for
certain holographic RG flows, the entanglement entropy undergoes a 'phase
transition' as the size of the system grows and as a result, evolution of the
c-function may exhibit a discontinuous drop.Comment: References adde
Short-cut to new anomalies in gravity duals to logarithmic conformal field theories
Various massive gravity theories in three dimensions are conjecturally dual
to logarithmic conformal field theories (LCFTs). We summarise the status of
these conjectures. LCFTs are characterised by the values of the central charges
and the so-called "new anomalies". We employ a short-cut to calculate these new
anomalies in generalised massive gravity and in the recently proposed
higher-derivative gravity theories with holographic c-theorem. Both cases
permit LCFTs exhibiting intriguing features, like rank three Jordan cells or
non-zero central charges. Finally, as an example we discuss in some detail the
partially massless version of new massive gravity, a theory with several
special properties that we call "partially massless gravity".Comment: 34 pages, 2 figures; v2: added references; v3: Several rewordings in
the introduction and section 2, added references. Matches published versio
Universality and exactness of Schrodinger geometries in string and M-theory
We propose an organizing principle for classifying and constructing
Schrodinger-invariant solutions within string theory and M-theory, based on the
idea that such solutions represent nonlinear completions of linearized vector
and graviton Kaluza-Klein excitations of AdS compactifications. A crucial
simplification, derived from the symmetry of AdS, is that the nonlinearities
appear only quadratically. Accordingly, every AdS vacuum admits infinite
families of Schrodinger deformations parameterized by the dynamical exponent z.
We exhibit the ease of finding these solutions by presenting three new
constructions: two from M5 branes, both wrapped and extended, and one from the
D1-D5 (and S-dual F1-NS5) system. From the boundary perspective, perturbing a
CFT by a null vector operator can lead to nonzero beta-functions for spin-2
operators; however, symmetry restricts them to be at most quadratic in
couplings. This point of view also allows us to easily prove nonrenormalization
theorems: for any Sch(z) solution of two-derivative supergravity constructed in
the above manner, z is uncorrected to all orders in higher derivative
corrections if the deforming KK mode lies in a short multiplet of an AdS
supergroup. Furthermore, we find infinite classes of 1/4 BPS solutions with
4-,5- and 7-dimensional Schrodinger symmetry that are exact.Comment: 31 pages, plus appendices; v2, minor corrections, added refs, slight
change in interpretation in section 2.3, new Schrodinger and Lifshitz
solutions included; v3, clarifications in sections 2 and 3 regarding
existence of solutions and multi-trace operator
Holographic GB gravity in arbitrary dimensions
We study the properties of the holographic CFT dual to Gauss-Bonnet gravity
in general dimensions. We establish the AdS/CFT dictionary and in
particular relate the couplings of the gravitational theory to the universal
couplings arising in correlators of the stress tensor of the dual CFT. This
allows us to examine constraints on the gravitational couplings by demanding
consistency of the CFT. In particular, one can demand positive energy fluxes in
scattering processes or the causal propagation of fluctuations. We also examine
the holographic hydrodynamics, commenting on the shear viscosity as well as the
relaxation time. The latter allows us to consider causality constraints arising
from the second-order truncated theory of hydrodynamics.Comment: 48 pages, 9 figures. v2: New discussion on free fields in subsection
3.3 and new appendix B on conformal tensor fields. Added comments on the
relation between the central charge appearing in the two-point function and
the "central charge" characterizing the entropy density in the discussion.
References adde
A Lovelock black hole bestiary
We revisit the study of (A)dS black holes in Lovelock theories. We present a
new tool that allows to attack this problem in full generality. In analyzing
maximally symmetric Lovelock black holes with non-planar horizon topologies
many distinctive and interesting features are observed. Among them, the
existence of maximally symmetric vacua do not supporting black holes in vast
regions of the space of gravitational couplings, multi-horizon black holes, and
branches of solutions that suggest the existence of a rich diagram of phase
transitions. The appearance of naked singularities seems unavoidable in some
cases, raising the question about the fate of the cosmic censorship conjecture
in these theories. There is a preferred branch of solutions for planar black
holes, as well as non-planar black holes with high enough mass or temperature.
Our study clarifies the role of all branches of solutions, including
asymptotically dS black holes, and whether they should be considered when
studying these theories in the context of AdS/CFT.Comment: 40 pages, 16 figures; v2: references added and minor amendments; v3:
title changed to improve its accuracy and general reorganization of the
results to ameliorate their presentatio
Moduli and electromagnetic black brane holography
We investigate the thermodynamic and hydrodynamic properties of 4-dimensional
gauge theories with finite electric charge density in the presence of a
constant magnetic field. Their gravity duals are planar magnetically and
electrically charged AdS black holes in theories that contain a gauge
Chern-Simons term. We present a careful analysis of the near horizon geometry
of these black branes at finite and zero temperature for the case of a scalar
field non-minimally coupled to the electromagnetic field. With the knowledge of
the near horizon data, we obtain analytic expressions for the shear viscosity
coefficient and entropy density, and also study the effect of a generic set of
four derivative interactions on their ratio. We also comment on the attractor
flows of the extremal solutions.Comment: 39 pages, no figures; v2: minor changes, refs. added; v3: typo fixed;
v4: a proof for decoupling of the viscosity mode added in appendix, matches
the published versio
- …
