We propose an organizing principle for classifying and constructing
Schrodinger-invariant solutions within string theory and M-theory, based on the
idea that such solutions represent nonlinear completions of linearized vector
and graviton Kaluza-Klein excitations of AdS compactifications. A crucial
simplification, derived from the symmetry of AdS, is that the nonlinearities
appear only quadratically. Accordingly, every AdS vacuum admits infinite
families of Schrodinger deformations parameterized by the dynamical exponent z.
We exhibit the ease of finding these solutions by presenting three new
constructions: two from M5 branes, both wrapped and extended, and one from the
D1-D5 (and S-dual F1-NS5) system. From the boundary perspective, perturbing a
CFT by a null vector operator can lead to nonzero beta-functions for spin-2
operators; however, symmetry restricts them to be at most quadratic in
couplings. This point of view also allows us to easily prove nonrenormalization
theorems: for any Sch(z) solution of two-derivative supergravity constructed in
the above manner, z is uncorrected to all orders in higher derivative
corrections if the deforming KK mode lies in a short multiplet of an AdS
supergroup. Furthermore, we find infinite classes of 1/4 BPS solutions with
4-,5- and 7-dimensional Schrodinger symmetry that are exact.Comment: 31 pages, plus appendices; v2, minor corrections, added refs, slight
change in interpretation in section 2.3, new Schrodinger and Lifshitz
solutions included; v3, clarifications in sections 2 and 3 regarding
existence of solutions and multi-trace operator