7,657 research outputs found

    Nonlinear singular problems with indefinite potential term

    Full text link
    We consider a nonlinear Dirichlet problem driven by a nonhomogeneous differential operator plus an indefinite potential. In the reaction we have the competing effects of a singular term and of concave and convex nonlinearities. In this paper the concave term is parametric. We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the positive parameter λ\lambda varies. This work continues our research published in arXiv:2004.12583, where ξ0\xi \equiv 0 and in the reaction the parametric term is the singular one.Comment: arXiv admin note: text overlap with arXiv:2004.1258

    Double-phase problems with reaction of arbitrary growth

    Full text link
    We consider a parametric nonlinear nonhomogeneous elliptic equation, driven by the sum of two differential operators having different structure. The associated energy functional has unbalanced growth and we do not impose any global growth conditions to the reaction term, whose behavior is prescribed only near the origin. Using truncation and comparison techniques and Morse theory, we show that the problem has multiple solutions in the case of high perturbations. We also show that if a symmetry condition is imposed to the reaction term, then we can generate a sequence of distinct nodal solutions with smaller and smaller energies

    On a class of parametric (p,2)(p,2)-equations

    Full text link
    We consider parametric equations driven by the sum of a pp-Laplacian and a Laplace operator (the so-called (p,2)(p,2)-equations). We study the existence and multiplicity of solutions when the parameter λ>0\lambda>0 is near the principal eigenvalue λ^1(p)>0\hat{\lambda}_1(p)>0 of (Δp,W01,p(Ω))(-\Delta_p,W^{1,p}_{0}(\Omega)). We prove multiplicity results with precise sign information when the near resonance occurs from above and from below of λ^1(p)>0\hat{\lambda}_1(p)>0

    Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential

    Full text link
    We study perturbations of the eigenvalue problem for the negative Laplacian plus an indefinite and unbounded potential and Robin boundary condition. First we consider the case of a sublinear perturbation and then of a superlinear perturbation. For the first case we show that for λ<λ^1\lambda<\widehat{\lambda}_{1} (λ^1\widehat{\lambda}_{1} being the principal eigenvalue) there is one positive solution which is unique under additional conditions on the perturbation term. For λλ^1\lambda\geq\widehat{\lambda}_{1} there are no positive solutions. In the superlinear case, for λ<λ^1\lambda<\widehat{\lambda}_{1} we have at least two positive solutions and for λλ^1\lambda\geq\widehat{\lambda}_{1} there are no positive solutions. For both cases we establish the existence of a minimal positive solution uˉλ\bar{u}_{\lambda} and we investigate the properties of the map λuˉλ\lambda\mapsto\bar{u}_{\lambda}

    Positive solutions for nonvariational Robin problems

    Full text link
    We study a nonlinear Robin problem driven by the pp-Laplacian and with a reaction term depending on the gradient (the convection term). Using the theory of nonlinear operators of monotone-type and the asymptotic analysis of a suitable perturbation of the original equation, we show the existence of a positive smooth solution

    Absolute and convective instabilities in non-local active-dissipative equations arising in the modelling of thin liquid films

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Absolute and convective instabilities in a non-local model that arises in the analysis of thin-film flows over flat or corrugated walls in the presence of an applied electric field are discussed. Electrified liquid films arise, for example, in coating processes where liquid films are deposited onto a target surfaces with a view to producing an evenly coating layer. In practice, the target surface, or substrate, may be irregular in shape and feature corrugations or indentations. This may lead to non-uniformities in the thickness of the coating layer. Attempts to mitigate film-surface irregularities can be made using, for example, electric fields. We analyse the stability of such thin-film flows and show that if the amplitude of the wall corrugations and/or the strength of the applied electric field is increased the convectively unstable flow undergoes a transition to an absolutely unstable flow

    Absolute and convective instabilities in non-local active-dissipative equations arising in the modelling of thin liquid films

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Absolute and convective instabilities in a non-local model that arises in the analysis of thin-film flows over flat or corrugated walls in the presence of an applied electric field are discussed. Electrified liquid films arise, for example, in coating processes where liquid films are deposited onto a target surfaces with a view to producing an evenly coating layer. In practice, the target surface, or substrate, may be irregular in shape and feature corrugations or indentations. This may lead to non-uniformities in the thickness of the coating layer. Attempts to mitigate film-surface irregularities can be made using, for example, electric fields. We analyse the stability of such thin-film flows and show that if the amplitude of the wall corrugations and/or the strength of the applied electric field is increased the convectively unstable flow undergoes a transition to an absolutely unstable flow

    Robin problems with a general potential and a superlinear reaction

    Full text link
    We consider semilinear Robin problems driven by the negative Laplacian plus an indefinite potential and with a superlinear reaction term which need not satisfy the Ambrosetti-Rabinowitz condition. We prove existence and multiplicity theorems (producing also an infinity of smooth solutions) using variational tools, truncation and perturbation techniques and Morse theory (critical groups)
    corecore