research

Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential

Abstract

We study perturbations of the eigenvalue problem for the negative Laplacian plus an indefinite and unbounded potential and Robin boundary condition. First we consider the case of a sublinear perturbation and then of a superlinear perturbation. For the first case we show that for λ<λ^1\lambda<\widehat{\lambda}_{1} (λ^1\widehat{\lambda}_{1} being the principal eigenvalue) there is one positive solution which is unique under additional conditions on the perturbation term. For λλ^1\lambda\geq\widehat{\lambda}_{1} there are no positive solutions. In the superlinear case, for λ<λ^1\lambda<\widehat{\lambda}_{1} we have at least two positive solutions and for λλ^1\lambda\geq\widehat{\lambda}_{1} there are no positive solutions. For both cases we establish the existence of a minimal positive solution uˉλ\bar{u}_{\lambda} and we investigate the properties of the map λuˉλ\lambda\mapsto\bar{u}_{\lambda}

    Similar works