This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Absolute and convective instabilities in a non-local model that arises in the analysis of thin-film
flows over flat or corrugated walls in the presence of an applied electric field are discussed. Electrified liquid
films arise, for example, in coating processes where liquid films are deposited onto a target surfaces with a
view to producing an evenly coating layer. In practice, the target surface, or substrate, may be irregular in
shape and feature corrugations or indentations. This may lead to non-uniformities in the thickness of the
coating layer. Attempts to mitigate film-surface irregularities can be made using, for example, electric fields.
We analyse the stability of such thin-film flows and show that if the amplitude of the wall corrugations
and/or the strength of the applied electric field is increased the convectively unstable flow undergoes a
transition to an absolutely unstable flow