956 research outputs found
Abundances of the elements in the solar system
A review of the abundances and condensation temperatures of the elements and
their nuclides in the solar nebula and in chondritic meteorites. Abundances of
the elements in some neighboring stars are also discussed.Comment: 42 pages, 11 tables, 8 figures, chapter, In Landolt- B\"ornstein, New
Series, Vol. VI/4B, Chap. 4.4, J.E. Tr\"umper (ed.), Berlin, Heidelberg, New
York: Springer-Verlag, p. 560-63
Understanding Far-Infrared Absorption in the S=1 Antiferromagnetic Chain Compound NENP
Infrared transmission measurements on the antiferromagnetic chain
compound NENP in applied magnetic fields show a sharp absorption line at the
field-shifted Haldane gap. This violates a wave-vector selection rule of the
Hamiltonian normally used for NENP, as the gap excitations occur at the
Brillouin zone boundary. We argue that the crystal structure admits terms which
can explain the absorption lines. In addition, in an applied field, staggered
orientations of the g-tensors produce a staggered magnetic field. This can
explain the observation of a finite gap at all applied fields.Comment: 12 pages, revtex, preprint HU-CMT-93H9
Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms
Selection pressure generated by antibiotics released into the environment could enrich for antibiotic resistance genes and antibiotic resistant bacteria, thereby increasing the risk for transmission to humans and animals. Tetracyclines comprise an antibiotic class of great importance to both human and animal health. Accordingly, residues of tetracycline are commonly detected in aquatic environments. To assess if tetracycline pollution in aquatic environments promotes development of resistance, we determined minimal selective concentrations (MSCs) in biofilms of complex aquatic bacterial communities using both phenotypic and genotypic assays. Tetracycline significantly increased the relative abundance of resistant bacteria at 10 μg/L, while specific tet genes (tetA and tetG) increased significantly at the lowest concentration tested (1 μg/L). Taxonomic composition of the biofilm communities was altered with increasing tetracycline concentrations. Metagenomic analysis revealed a concurrent increase of several tet genes and a range of other genes providing resistance to different classes of antibiotics (e.g. cmlA, floR, sul1, and mphA), indicating potential for co-selection. Consequently, MSCs for the tet genes of ≤ 1 μg/L suggests that current exposure levels in e.g. sewage treatment plants could be sufficient to promote resistance. The methodology used here to assess MSCs could be applied in risk assessment of other antibiotics as well
Magnetization profiles and NMR spectra of doped Haldane chains at finite temperatures
Open segments of S=1 antiferromagnetic spin chains are studied at finite
temperatures and fields using continuous time Quantum Monte Carlo techniques.
By calculating the resulting magnetization profiles for a large range of chain
lengths with fixed field and temperature we reconstruct the experimentally
measured NMR spectrum of impurity doped YBaNiMgO. For
temperatures above the gap the calculated NMR spectra are in excellent
agreement with the experimental results, confirming the existence of
excitations at the end of open S=1 chain segments. At temperatures below the
gap, neglecting inter chain couplings, we still find well defined peaks in the
calculated NMR spectra corresponding to the chain end excitations. At
low temperatures, inter chain couplings could be important, resulting in a more
complicated phase.Comment: 7 pages, 5 figures, minor correction
High field magnetic resonant properties of beta'-(ET)2SF5CF2SO3
A systematic electron spin resonance (ESR) investigation of the low
temperature regime for the (ET)2SF5CF2SO3 system was performed in the frequency
range of ~200-700 GHz, using backward wave oscillator sources, and at fields up
to 25 T. Newly acquired access to the high frequency and fields shows
experimental ESR results in agreement with the nuclear magnetic resonance (NMR)
investigation, revealing evidence that the transition seen at 20 K is not of
conventional spin-Peierls order. A significant change of the spin resonance
spectrum in beta'-(ET)2SF5CF2SO3 at low temperatures, indicates a transition
into a three-dimensional-antiferromagnetic (3D AFM) phase.Comment: 4 pages, 7 figures, minor grammatical change
Excitations of the field-induced soliton lattice in CuGeO3
Here we report the first inelastic neutron scattering study of the magnetic
excitations in the incommensurate phase of a spin-Peierls material. The results
on CuGeO3 provide direct evidence of a finite excitation gap, two sharp
magnetic excitation branches and a very low-lying excitation which is
identified as a phason mode, the Goldstone mode of the incommensurate soliton
lattice.Comment: 5 pages, revtex, 4 figures (*.eps), win-zippe
Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens
© 2015 Brabec et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article
Thermodynamics of Spin S = 1/2 Antiferromagnetic Uniform and Alternating-Exchange Heisenberg Chains
The magnetic susceptibility chi and specific heat C versus temperature T of
the spin-1/2 antiferromagnetic alternating-exchange (J1 and J2) Heisenberg
chain are studied for the entire range 0 \leq alpha \leq 1 of the alternation
parameter alpha = J2/J1. For the uniform chain (alpha = 1), detailed
comparisons of the high-accuracy chi(T) and C(T) Bethe ansatz data of Kluemper
and Johnston are made with the asymptotically exact low-T field theory
predictions of Lukyanov. QMC simulations and TMRG calculations of chi(alpha,T)
are presented. From the low-T TMRG data, the spin gap Delta(alpha)/J1 is
extracted for 0.8 \leq alpha \leq 0.995. High accuracy fits to all of the above
numerical data are obtained. We examine in detail the theoretical predictions
of Bulaevskii for chi(alpha,T) and compare them with our results. Our
experimental chi(T) and C(T) data for NaV2O5 single crystals are modeled in
detail. The chi(T) data above the spin dimerization temperature Tc = 34 K are
not in agreement with the prediction for the uniform Heisenberg chain, but can
be explained if there is a moderate ferromagnetic interchain coupling and/or if
J changes with T. By fitting the chi(T) data, we obtain Delta(T = 0) = 103(2)
K, alternation parameter delta(0) = (1 - alpha)/(1 + alpha) = 0.034(6) and
average exchange constant J(0) = 640(80) K. The delta(T) and Delta(T) are
derived from the data. A spin pseudogap with a large magnitude \approx 0.4
Delta(0) is consistently found just above Tc, which decreases with increasing
T. Analysis of our C(T) data indicates that at Tc, at least 77% of the entropy
change due to the transition at Tc and associated order parameter fluctuations
arise from the lattice and/or charge degrees of freedom and less than 23% from
the spin degrees of freedom.Comment: 53 two-column REVTeX pages, 50 embedded figures, 7 tables. Revisions
required due to incorrect Eq. (39) in Ref. 51 which gives the low-T
approximation for the specific heat of a S = 1/2 1D system with a spin gap;
no conclusions were changed. Additional minor revisions made. Phys. Rev. B
(in press
- …
