23,539 research outputs found
Obfuscation-based malware update: A comparison of manual and automated methods
Indexación: Scopus; Web of Science.This research presents a proposal of malware classification and its update based on capacity and obfuscation. This article is an extension of [4]a, and describes the procedure for malware updating, that is, to take obsolete malware that is already detectable by antiviruses, update it through obfuscation techniques and thus making it undetectable again. As the updating of malware is generally performed manually, an automatic solution is presented together with a comparison from the standpoint of cost and processing time. The automated method proved to be more reliable, fast and less intensive in the use of resources, specially in terms of antivirus analysis and malware functionality checking times.http://univagora.ro/jour/index.php/ijccc/article/view/2961/112
Entanglement production by quantum error correction in the presence of correlated environment
We analyze the effect of a quantum error correcting code on the entanglement
of encoded logical qubits in the presence of a dephasing interaction with a
correlated environment. Such correlated reservoir introduces entanglement
between physical qubits. We show that for short times the quantum error
correction interprets such entanglement as errors and suppresses it. However
for longer time, although quantum error correction is no longer able to correct
errors, it enhances the rate of entanglement production due to the interaction
with the environment.Comment: 7 pages, 3 figures, published versio
Development of high-performance lightweight electrodes for hydrogen-oxygen fuel cells Third quarterly report, 6 Oct. 1965 - 5 Jan. 1966
High performance, lightweight electrodes for hydrogen-oxygen fuel cell
Resonance enhancement of particle production during reheating
We found a consistent equation of reheating after inflation, which shows that
for small quantum fluctuations the frequencies of resonance are slighted
different from the standard ones. Quantum interference is taken into account
and we found that at large fluctuations the process mimics very well the usual
parametric resonance but proceed in a different dynamical way. The analysis is
made in a toy quantum mechanical model and we discuss further its extension to
quantum field theory.Comment: 4 pages, 4 figures(eps), using RevTe
Extraction of Singlet States from Noninteracting High-Dimensional Spins
We present a scheme for the extraction of singlet states of two remote
particles of arbitrary quantum spin number. The goal is achieved through
post-selection of the state of interaction mediators sent in succession. A
small number of iterations is sufficient to make the scheme effective. We
propose two suitable experimental setups where the protocol can be implemented.Comment: 4 pages, 2 figure
An efficient flamelet progress-variable method for modeling non-premixed flames in weak electric fields
Combustion stabilization and enhancement of the flammability limits are
mandatory objectives to improve nowadays combustion chambers. At this purpose,
the use of an electric field in the flame region provides a solution which is,
at the same time, easy to implement and effective to modify the flame
structure. The present work describes an efficient flamelet progress-variable
approach developed to model the fluid dynamics of flames immersed in an
electric field. The main feature of this model is that it can use complex
ionization mechanisms without increasing the computational cost of the
simulation. The model is based on the assumption that the combustion process is
not directly influenced by the electric field and has been tested using two
chemi-ionization mechanisms of different complexity in order to examine its
behavior with and without the presence of heavy anions in the mixture. Using a
one- and two-dimensional numerical test cases, the present approach has been
able to reproduce all the major aspects encountered when a flame is subject to
an imposed electric field and the main effects of the different chemical
mechanisms. Moreover, the proposed model is shown to produce a large reduction
in the computational cost, being able to shorten the time needed to perform a
simulation up to 40 times.Comment: 26 pages, 13 figures, paper accepted for publication on Computers and
Fluid
Cluster Algorithm Renormalization Group Study of Universal Fluctuations in the 2D Ising Model
In this paper we propose a novel method to study critical systems numerically
by a combined collective-mode algorithm and Renormalization Group on the
lattice. This method is an improved version of MCRG in the sense that it has
all the advantages of cluster algorithms. As an application we considered the
2D Ising model and studied wether scale invariance or universality are possible
underlying mechanisms responsible for the approximate "universal fluctuations"
close to a so-called bulk temperature . "Universal fluctuations" was
first proposed in [1] and stated that the probability density function of a
global quantity for very dissimilar systems, like a confined turbulent flow and
a 2D magnetic system, properly normalized to the first two moments, becomes
similar to the "universal distribution", originally obtained for the
magnetization in the 2D XY model in the low temperature region. The results for
the critical exponents and the renormalization group flow of the probability
density function are very accurate and show no evidence to support that the
approximate common shape of the PDF should be related to both scale invariance
or universal behavior.Comment: 6 pages, 4 figures and 3 table
Entanglement detection in hybrid optomechanical systems
We study a device formed by a Bose Einstein condensate (BEC) coupled to the
field of a cavity with a moving end-mirror and find a working point such that
the mirror-light entanglement is reproduced by the BEC-light quantum
correlations. This provides an experimentally viable tool for inferring
mirror-light entanglement with only a limited set of assumptions. We prove the
existence of tripartite entanglement in the hybrid device, persisting up to
temperatures of a few milli-Kelvin, and discuss a scheme to detect it.Comment: 6 pages, 7 figures, published versio
- …
