2,069 research outputs found
Local Manipulation of Nuclear Spin in a Semiconductor Quantum Well
The shaping of nuclear spin polarization profiles and the induction of
nuclear resonances are demonstrated within a parabolic quantum well using an
externally applied gate voltage. Voltage control of the electron and hole wave
functions results in nanometer-scale sheets of polarized nuclei positioned
along the growth direction of the well. RF voltages across the gates induce
resonant spin transitions of selected isotopes. This depolarizing effect
depends strongly on the separation of electrons and holes, suggesting that a
highly localized mechanism accounts for the observed behavior.Comment: 18 pages, 4 figure
Spin and recombination dynamics of excitons and free electrons in p-type GaAs : effect of carrier density
Carrier and spin recombination are investigated in p-type GaAs of acceptor
concentration NA = 1.5 x 10^(17) cm^(-3) using time-resolved photoluminescence
spectroscopy at 15 K. At low pho- tocarrier concentration, acceptors are mostly
neutral and photoelectrons can either recombine with holes bound to acceptors
(e-A0 line) or form excitons which are mostly trapped on neutral acceptors
forming the (A0X) complex. It is found that the spin lifetime is shorter for
electrons that recombine through the e-A0 transition due to spin relaxation
generated by the exchange scattering of free electrons with either trapped or
free holes, whereas spin flip processes are less likely to occur once the
electron forms with a free hole an exciton bound to a neutral acceptor. An
increase of exci- tation power induces a cross-over to a regime where the
bimolecular band-to-band (b-b) emission becomes more favorable due to screening
of the electron-hole Coulomb interaction and ionization of excitonic complexes
and free excitons. Then, the formation of excitons is no longer possible, the
carrier recombination lifetime increases and the spin lifetime is found to
decrease dramatically with concentration due to fast spin relaxation with free
photoholes. In this high density regime, both the electrons that recombine
through the e-A0 transition and through the b-b transition have the same spin
relaxation time.Comment: 4 pages, 5 figure
Spin dependent photoelectron tunnelling from GaAs into magnetic Cobalt
The spin dependence of the photoelectron tunnel current from free standing
GaAs films into out-of- plane magnetized Cobalt films is demonstrated. The
measured spin asymmetry (A) resulting from a change in light helicity, reaches
+/- 6% around zero applied tunnel bias and drops to +/- 2% at a bias of -1.6 V
applied to the GaAs. This decrease is a result of the drop in the photoelectron
spin polarization that results from a reduction in the GaAs surface
recombination velocity. The sign of A changes with that of the Cobalt
magnetization direction. In contrast, on a (nonmagnetic) Gold film A ~ 0%
Absence of an intrinsic value for the surface recombination velocity in doped semiconductors
A self-consistent expression for the surface recombination velocity  and
the surface Fermi level unpinning energy as a function of light excitation
power () is presented for n- and p-type semiconductors doped above the
10 cm range. Measurements of  on p-type GaAs films using a
novel polarized microluminescence technique are used to illustrate two limiting
cases of the model. For a naturally oxidized surface  is described by a
power law in  whereas for a passivated surface  varies
logarithmically with . Furthermore, the variation in  with surface state
density and bulk doping level is found to be the result of Fermi level
unpinning rather than a change in the intrinsic surface recombination velocity.
It is concluded that  depends on  throughout the experimentally
accessible range of excitation powers and therefore that no instrinsic value
can be determined. Previously reported values of  on a range of
semiconducting materials are thus only valid for a specific excitation power.Comment: 10 pages, 7 figure
Effect of the Pauli principle on photoelectron spin transport in GaAs
In p+ GaAs thin films, the effect of photoelectron degeneracy on spin
transport is investigated theoretically and experimentally by imaging the spin
polarization profile as a function of distance from a tightly-focussed light
excitation spot. Under degeneracy of the electron gas (high concentration, low
temperature), a dip at the center of the polarization profile appears with a
polarization maximum at a distance of about  from the center. This
counterintuitive result reveals that photoelectron diffusion depends on spin,
as a direct consequence of the Pauli principle. This causes a concentration
dependence of the spin stiffness while the spin dependence of the mobility is
found to be weak in doped material. The various effects which can modify spin
transport in a degenerate electron gas under local laser excitation are
considered. A comparison of the data with a numerical solution of the coupled
diffusion equations reveals that ambipolar coupling with holes increases the
steady-state photo-electron density at the excitation spot and therefore the
amplitude of the degeneracy-induced polarization dip. Thermoelectric currrents
are predicted to depend on spin under degeneracy (spin Soret currents), but
these currents are negligible except at very high excitation power where they
play a relatively small role. Coulomb spin drag and bandgap renormalization are
negligible due to electrostatic screening by the hole gas
Genomics knowledge and attitudes among European public health professionals. Results of a cross-sectional survey
Background The international public health (PH) community is debating the opportunity to incorporate genomic technologies into PH practice. A survey was conducted to assess attitudes of the European Public Health Association (EUPHA) members towards their role in the implementation of public health genomics (PHG), and their knowledge and attitudes towards genetic testing and the delivery of genetic services. Methods EUPHA members were invited via monthly newsletter and e-mail to take part in an online survey from February 2017 to January 2018. A descriptive analysis of knowledge and attitudes was conducted, along with a univariate and multivariate analysis of their determinants. Results Five hundred and two people completed the questionnaire, 17.9% were involved in PHG activities. Only 28.9% correctly identified all medical conditions for which there is (or not) evidence for implementing genetic testing; over 60% thought that investing in genomics may divert economic resources from social and environmental determinants of health. The majority agreed that PH professionals may play different roles in incorporating genomics into their activities. Better knowledge was associated with positive attitudes towards the use of genetic testing and the delivery of genetic services in PH (OR = 1.48; 95% CI 1.01–2.18). Conclusions Our study revealed quite positive attitudes, but also a need to increase awareness on genomics among European PH professionals. Those directly involved in PHG activities tend to have a more positive attitude and better knowledge; however, gaps are also evident in this group, suggesting the need to harmonize practice and encourage greater exchange of knowledge among professionals
GaAs(111)A and B in hydrazine sulfide solutions : extreme polarity dependence of surface adsorption processes
Chemical bonds formed by hydrazine-sulfide treatment of GaAs(111) were
studied by synchrotron photoemission spectroscopy. At the B surface, the top
arsenic atoms are replaced by nitrogen atoms, while GaAs(111)A is covered by
sulfur, also bonded to underlying gallium, despite the sulfide molar
concentration being 103 times smaller than that of the hydrazine. This extreme
dependence on surface polarity is explained by competitive adsorption processes
of HS- and OH- anions and of hydrazine molecules, on Ga- adsorption sites,
which have distinct configurations on the A and B surfaces
Photoassisted tunneling from free-standing GaAs thin films into metallic surfaces
The tunnel photocurrent between a gold surface and a free-standing
semiconducting thin film excited from the rear by above bandgap light has been
measured as a function of applied bias, tunnel distance and excitation light
power. The results are compared with the predictions of a model which includes
the bias dependence of the tunnel barrier height and the bias-induced decrease
of surface recombination velocity. It is found that i) the tunnel photocurrent
from the conduction band dominates that from surface states. ii) At large
tunnel distance the exponential bias dependence of the current is explained by
that of the tunnel barrier height, while at small distance the change of
surface recombination velocity is dominant
- …
