1,197 research outputs found
Edge insulating topological phases in a two-dimensional long-range superconductor
We study the zero-temperature phase diagram of a two dimensional square
lattice loaded by spinless fermions, with nearest neighbor hopping and
algebraically decaying pairing. We find that for sufficiently long-range
pairing, new phases, not continuously connected with any short-range phase,
occur, signaled by the violation of the area law for the Von Neumann entropy,
by semi-integer Chern numbers, and by edge modes with nonzero mass. The latter
feature results in the absence of single-fermion edge conductivity, present
instead in the short- range limit. The definition of a topology in the bulk and
the presence of a bulk-boundary correspondence is still suggested for the
long-range phases. Recent experimental proposals and advances open the
stimulating possibility to probe the described long-range effects in
next-future realistic set-ups
Mesoscopic continuous and discrete channels for quantum information transfer
We study the possibility of realizing perfect quantum state transfer in
mesoscopic devices. We discuss the case of the Fano-Anderson model extended to
two impurities. For a channel with an infinite number of degrees of freedom, we
obtain coherent behavior in the case of strong coupling or in weak coupling
off-resonance. For a finite number of degrees of freedom, coherent behavior is
associated to weak coupling and resonance conditions
Double dot chain as a macroscopic quantum bit
We consider an array of N quantum dot pairs interacting via Coulomb
interaction between adjacent dots and hopping inside each pair. We show that at
the first order in the ratio of hopping and interaction amplitudes, the array
maps in an effective two level system with energy separation becoming
exponentially small in the macroscopic (large N) limit. Decoherence at zero
temperature is studied in the limit of weak coupling with phonons. In this case
the macroscopic limit is robust with respect to decoherence. Some possible
applications in quantum information processing are discussed.Comment: Phys. Rev. A (in press
Accurate prediction of PHEMT intermodulation distortion using the nonlinear discrete convolution model
A general-purpose, technology-independent behavioral model is adopted for the intermodulation performance prediction of PHEMT devices. The model can be easily identified since its nonlinear functions are directly related to conventional DC and small-signal differential parameter measurements. Experimental results which confirm the model accuracy at high operating frequencies are provided in the pape
Spin effects in Bose-Glass phases
We study the mechanism of formation of Bose glass (BG) phases in the spin-1
Bose Hubbard model when diagonal disorder is introduced. To this aim, we
analyze first the phase diagram in the zero-hopping limit, there disorder
induces superposition between Mott insulator (MI) phases with different filling
numbers. Then BG appears as a compressible but still insulating phase. The
phase diagram for finite hopping is also calculated with the Gutzwiller
approximation. The bosons' spin degree of freedom introduces another scattering
channel in the two-body interaction modifying the stability of MI regions with
respect to the action of disorder. This leads to some peculiar phenomena such
as the creation of BG of singlets, for very strong spin correlation, or the
disappearance of BG phase in some particular cases where fluctuations are not
able to mix different MI regions
A Dynamic Composition and Stubless Invocation Approach for Information-Providing Services
The automated specification and execution of composite services are important capabilities of service-oriented systems. In practice, service invocation is performed by client components (stubs) that are generated from service descriptions at design time. Several researchers have proposed mechanisms for late binding. They all require an object representation (e.g., Java classes) of the XML data types specified in service descriptions to be generated and meaningfully integrated in the client code at design time. However, the potential of dynamic composition can only be fully exploited if supported in the invocation phase by the capability of dynamically binding to services with previously unknown interfaces. In this work, we address this limitation by proposing a way of specifying and executing composite services, without resorting to previously compiled classes that represent XML data types. Semantic and structural properties encoded in service descriptions are exploited to implement a mechanism, based on the Graphplan algorithm, for the run-time specification of composite service plans. Composite services are then executed through the stubless invocation of constituent services. Stubless invocation is achieved by exploiting structural properties of service descriptions for the run-time generation of messages
Ambient-aware continuous care through semantic context dissemination
Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data.
Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability.
Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered.
Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results
Abelian gauge potentials on cubic lattices
The study of the properties of quantum particles in a periodic potential
subject to a magnetic field is an active area of research both in physics and
mathematics; it has been and it is still deeply investigated. In this review we
discuss how to implement and describe tunable Abelian magnetic fields in a
system of ultracold atoms in optical lattices. After discussing two of the main
experimental schemes for the physical realization of synthetic gauge potentials
in ultracold set-ups, we study cubic lattice tight-binding models with
commensurate flux. We finally examine applications of gauge potentials in
one-dimensional rings.Comment: To appear on: "Advances in Quantum Mechanics: Contemporary Trends and
Open Problems", G. Dell'Antonio and A. Michelangeli eds., Springer-INdAM
series 201
Inhibition of LPS-Induced Inflammatory Response of Oral Mesenchymal Stem Cells in the Presence of Galectin-3
Galectin-3 (GAL-3) is a beta-galactoside binding lectin produced by mesenchymal stem cells (MSCs) and other cell sources under inflammatory conditions. Several studies have reported that GAL-3 exerts an anti-inflammatory action, regulated by its natural ligand GAL-3 BP. In the present study, we aimed to assess the GAL-3 mediated regulation of the MSC function in an LPS-induced inflammation setting. Human gingival mesenchymal stem cells (hGMSCs) were stimulated in vitro with LPSs; the expression of TLR4, NFκB p65, MyD88 and NALP3 were assessed in the hGMSCs via immunofluorescence imaging using confocal microscopy, Western blot assay, and RT-PCR before and after the addition of GAL-3, both alone and with the addition of its inhibitors. LPSs stimulated the expression of TLR4, NFκB p65, MyD88 and NALP3 in hGMSCs, which was inhibited by GAL-3. The addition of either GAL3-BP or the antibody to GAL-3 were able to revert the GAL-3-mediated effects, restoring the expression of TLR4, NFκB p65, MyD88 and NALP3. GAL-3 induces the downregulation of the LPS-induced inflammatory program in MSCs
- …
