3,380 research outputs found

    Land-Focused Changes in the Updated GEOS FP System (Version 5.25)

    Get PDF
    Many of the changes imposed in the January 2020 upgrade from Version 5.22 to 5.25 of the Goddard Earth Observing System (GEOS) Forward Processing (FP) analysis system were designed to increase the realism of simulated land variables. The changes, which consist of both land model parameter updates and improvements to the physical treatments employed for various land processes, have generally positive or neutral impacts on the character of the FP product, as documented here

    Hofstadter-type energy spectra in lateral superlattices defined by periodic magnetic and electrostatic fields

    Full text link
    We calculate the energy spectrum of an electron moving in a two-dimensional lattice which is defined by an electric potential and an applied perpendicular magnetic field modulated by a periodic surface magnetization. The spatial direction of this magnetization introduces complex phases into the Fourier coefficients of the magnetic field. We investigate the effect of the relative phases between electric and magnetic modulation on band width and internal structure of the Landau levels.Comment: 5 LaTeX pages with one gif figure to appear in Phys. Rev.

    Properties of the phonon-induced pairing interaction in YBa2_2Cu3_3O7_7 within the local density approximation

    Full text link
    The properties of the phonon-induced interaction between electrons are studied using the local density approximation (LDA). Restricting the electron momenta to the Fermi surface we find generally that this interaction has a pronounced peak for large momentum transfers and that the interband contributions between bonding and antibonding band are of the same magnitude as the intraband ones. Results are given for various symmetry averages of this interaction over the Fermi surface. In particular, we find that the dimensionless coupling constant in the d-wave channel λd\lambda^d, relevant for superconductivity, is only 0.022, i.e., even about ten times smaller than the small value of the s-wave channel. Similarly, the LDA contribution to the resistivity is about a factor 10 times smaller than the observed resistivity suggesting that phonons are not the important low-energy excitations in high-Tc_c oxides.Comment: 6 pages, 7 figure

    Magnetoresistance of a two-dimensional electron gas with spatially periodic lateral modulations: Exact consequences of Boltzmann's equation

    Full text link
    On the basis of Boltzmann's equation, and including anisotropic scattering in the collision operator, we investigate the effect of one-dimensional superlattices on two-dimensional electron systems. In addition to superlattices defined by static electric and magnetic fields, we consider mobility superlattices describing a spatially modulated density of scattering centers. We prove that magnetic and electric superlattices in xx-direction affect only the resistivity component ρxx\rho_{xx} if the mobility is homogeneous, whereas a mobility lattice in xx-direction in the absence of electric and magnetic modulations affects only ρyy\rho_{yy}. Solving Boltzmann's equation numerically, we calculate the positive magnetoresistance in weak magnetic fields and the Weiss oscillations in stronger fields within a unified approach.Comment: submitted to PR

    Recent results from lattice calculations

    Full text link
    Recent results from lattice QCD calculations relevant to particle physics phenomenology are reviewed. They include the calculations of strong coupling constant, quark masses, kaon matrix elements, and D and B meson matrix elements. Special emphasis is on the recent progress in the simulations including dynamical quarks.Comment: 13 pages, 8 figures, plenary talk at the 32nd International Conference on High-Energy Physics (ICHEP 2004), August 16-22, 2004, Beijing, Chin

    Incompressible strips in dissipative Hall bars as origin of quantized Hall plateaus

    Full text link
    We study the current and charge distribution in a two dimensional electron system, under the conditions of the integer quantized Hall effect, on the basis of a quasi-local transport model, that includes non-linear screening effects on the conductivity via the self-consistently calculated density profile. The existence of ``incompressible strips'' with integer Landau level filling factor is investigated within a Hartree-type approximation, and non-local effects on the conductivity along those strips are simulated by a suitable averaging procedure. This allows us to calculate the Hall and the longitudinal resistance as continuous functions of the magnetic field B, with plateaus of finite widths and the well-known, exactly quantized values. We emphasize the close relation between these plateaus and the existence of incompressible strips, and we show that for B values within these plateaus the potential variation across the Hall bar is very different from that for B values between adjacent plateaus, in agreement with recent experiments.Comment: 13 pages, 11 figures, All color onlin

    A Data-Driven Approach for Daily Real-Time Estimates and Forecasts of Near-Surface Soil Moisture

    Get PDF
    NASAs Soil Moisture Active Passive (SMAP) mission provides global surface soil moisture retrievals with a revisit time of 2-3 days and a latency of 24 hours. Here, to enhance the utility of the SMAP data, we present an approach for improving real-time soil moisture estimates (nowcasts) and for forecasting soil moisture several days into the future. The approach, which involves using an estimate of loss processes (evaporation and drainage) and precipitation to evolve the most recent SMAP retrieval forward in time, is evaluated against subsequent SMAP retrievals themselves. The nowcast accuracy over the continental United States (CONUS) is shown to be markedly higher than that achieved with the simple yet common persistence approach. The accuracy of soil moisture forecasts, which rely on precipitation forecasts rather than on precipitation measurements, is reduced relative to nowcast accuracy but is still significantly higher than that obtained through persistence

    Near-infrared spectroscopy of candidate red supergiant stars in clusters

    Full text link
    Clear identifications of Galactic young stellar clusters farther than a few kpc from the Sun are rare, despite the large number of candidate clusters. We aim to improve the selection of candidate clusters rich in massive stars with a multiwavelength analysis of photometric Galactic data that range from optical to mid-infrared wavelengths. We present a photometric and spectroscopic analysis of five candidate stellar clusters, which were selected as overdensities with bright stars (Ks < 7 mag) in GLIMPSE and 2MASS images. A total of 48 infrared spectra were obtained. The combination of photometry and spectroscopy yielded six new red supergiant stars with masses from 10 Msun to 15 Msun. Two red supergiants are located at Galactic coordinates (l,b)=(16.7deg,-0.63deg) and at a distance of about ~3.9 kpc; four other red supergiants are members of a cluster at Galactic coordinates (l,b)=(49.3deg,+0.72deg) and at a distance of ~7.0 kpc. Spectroscopic analysis of the brightest stars of detected overdensities and studies of interstellar extinction along their line of sights are fundamental to distinguish regions of low extinction from actual stellar clusters. The census of young star clusters containing red supergiants is incomplete; in the existing all-sky near-infrared surveys, they can be identified as overdensities of bright stars with infrared color-magnitude diagrams characterized by gaps.Comment: 16 pages, 10 figures, accepted to A&A 201
    corecore