We study the current and charge distribution in a two dimensional electron
system, under the conditions of the integer quantized Hall effect, on the basis
of a quasi-local transport model, that includes non-linear screening effects on
the conductivity via the self-consistently calculated density profile. The
existence of ``incompressible strips'' with integer Landau level filling factor
is investigated within a Hartree-type approximation, and non-local effects on
the conductivity along those strips are simulated by a suitable averaging
procedure. This allows us to calculate the Hall and the longitudinal resistance
as continuous functions of the magnetic field B, with plateaus of finite widths
and the well-known, exactly quantized values. We emphasize the close relation
between these plateaus and the existence of incompressible strips, and we show
that for B values within these plateaus the potential variation across the Hall
bar is very different from that for B values between adjacent plateaus, in
agreement with recent experiments.Comment: 13 pages, 11 figures, All color onlin