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The two main contributors to streamflow predictability at subseasonal to seasonal timescales in tropical
regions are: (i) the predictability of meteorologic (particularly precipitation) anomalies, and (ii) the land
surface soil moisture state at the start of the forecast period. Meteorological predictions at subseasonal
timescale are usually fraught with error and may not be dependable. The accurate initialization of soil
moisture, as obtained through real-time land data analysis, may provide skill in subseasonal to seasonal
streamflow prediction, even when the prediction skill for rainfall is small.

A series of experiments using the Catchment Land Surface Model (CLSM) is performed to characterize
the contribution of accurate soil moisture initialization to the skill of streamflow prediction in Sri Lanka
at timescales up to 2 months. We find that at the monthly timescale, accurate soil moisture initialization
provides between 10% and 60% of the total runoff prediction skill that could be obtained under a perfect
prediction of meteorological forcing. Some contributions to streamflow forecast skill are also found for
the second month of forecast.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction the state of the El-Nino Southern Oscillation (ENSO) months to sea-
Water is far from plentiful in many parts of the world, and re-
gions with a tendency to experience water stress may reap impor-
tant economic and societal benefits from water resources planning.
If viable, a key aid to such planning would be accurate predictions
of streamflow at subseasonal to seasonal timescales. Improved
streamflow predictions would allow, for example, a more effective
operation of reservoir systems.

Outside of mean seasonality, the two main contributors to
streamflow predictability at subseasonal to seasonal timescales
are [1–3]: (i) the predictability of meteorologic (particularly pre-
cipitation) anomalies, and (ii) the initialization of land moisture
conditions at the start of the forecast period. Precipitation predic-
tion has an obvious impact on streamflow prediction: greater rain-
fall implies greater streamflow. Furthermore, precipitation can
indeed be predicted, at least to some extent, at seasonal leads, par-
ticularly in the tropics. Long-lead climate forecasts using coupled
ocean–atmosphere–land models (e.g. [4]) are capable of predicting
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sons in advance. ENSO is well known for its impact on tropical
rainfall [5] and exhibits a robust relationship with Sri Lankan rain-
fall and streamflow [6,7]. Evidence that ENSO can affect extratrop-
ical rainfall as well has also been reported [8,9].

In the present paper, initialization of land moisture conditions
translates to soil moisture and groundwater depth initialization,
since we are focusing on the tropical region of Sri Lanka, for which
snow storage plays no role. The role of initialized soil moisture on
streamflow prediction is slightly more subtle than that of predicted
precipitation. First consider that according to a number of observa-
tions-based studies, soil moisture memory may have a timescale of
1–3 months (e.g. [13,14]). Thus, the initial soil moisture provides
some indication of the soil moisture state during the seasonal fore-
cast period. Now consider that the wetness of the soil should exert
some control over the runoff fraction (the ratio of the streamflow
coming out of a watershed to the total rainfall incident on the wa-
tershed). Aside from special cases (e.g. the soil being so parched
that it behaves like a ‘‘cement barrier” to infiltration), a wetter re-
gion will tend to convert a greater fraction of incident precipitation
into runoff, and thus streamflow. In other words, if the surface is
anomalously wet at the beginning of a forecast period, then even
if the rainfall during the forecast period matches the multi-year
mean for the period, one might predict anomalously high stream-
flow. Maurer and Lettenmaier [9] and Berg and Mulroy [10] have
shown that the macroscale estimates of soil moisture indeed have
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the potential to enhance the streamflow prediction. The impact of
the initial soil moisture state on hydrologic response at the catch-
ment scale has also been noted [11,12]. Note that initial soil mois-
ture can be determined through in situ observations or, perhaps
more practically, through land data assimilation [15,16]. Accurate
soil moisture initialization through land data assimilation has been
shown to be viable for real-time monthly-to-seasonal forecast sys-
tems [17]. One aspect of land data assimilation involves driving a
land surface model (LSM) over a region of interest with meteoro-
logical forcing derived from observations. In response to the obser-
vation-based forcings, the modeled soil moisture states (and
implicit groundwater states) evolve to realistic values.

The contribution of soil moisture initialization to tropical
streamflow prediction is examined here in the context of long-
term observed and modeled hydrological datasets for the tropical
island of Sri Lanka. Streamflow measurements in Sri Lanka at over
140 stations span a variety of climatic and geographic conditions
(103 river basins that range from humid to semi-arid, from low
to high altitudes, from 9 to 10,448 km2 in area) and extend from
1921 to the present [18]. Sri Lanka also offers an extensive histor-
ical precipitation record since 1869 with 400 functioning stations
in an island of 65,000 km2. These precipitation records are of suffi-
cient density to enable gridding at a resolution of 10 km [19]. These
gridded data can be used in conjunction with bias-corrected global
reanalysis data to force a state-of-the-art land surface model and
thereby produce simulated streamflows for detailed analysis. The
results should have direct relevance to water resources manage-
ment in Sri Lanka and should also apply in a general sense to other
regions that do not have snow cover.

Section 2.1 describes the Catchment Land Surface Model (the
model used in this study), Section 2.2 describes the data used,
and Section 3 describes the ability of this LSM to reproduce ob-
served Sri Lankan streamflows when forced with realistic meteoro-
logical data. In subsequent sections, we describe the design of
modified LSM simulations that isolate, quantify and compare the
effects of accurate soil moisture initialization on streamflow
prediction.

2. Model and data used

2.1. The Catchment Land Surface Model (CLSM)

Most LSMs coupled to Atmospheric General Circulation Models
(AGCMs) effectively consider soil moisture to be uniform over a
grid cell that may span hundreds of kilometers. Runoff generation
and subsurface soil moisture movement in nature, however, are
largely controlled by the topography of the land surface and spatial
heterogeneity in soil moisture. Typical Soil Vegetation Atmosphere
Transfer (SVAT) schemes are thus arguably ill-equipped to model
runoff correctly (and, by extension, evaporation correctly [20]).
Note also that imposing quasi-rectangular atmospheric grid ele-
ments on the land surface itself is a rather artificial representation,
because in nature soil moisture movement and runoff generation
take place over irregularly-shaped, topographically-defined hydro-
logic catchments (or watersheds).

These weaknesses in the standard SVAT representation
prompted the development of the Catchment LSM (CLSM
[21,22]). The CLSM considers irregularly-shaped hydrologic catch-
ments as the fundamental elements of the land surface for comput-
ing land surface processes. Each catchment is partitioned into three
regimes: (i) a saturated region, from which evaporation occurs
with no water stress and over which rainfall is immediately con-
verted to surface runoff, (ii) a sub-saturated region, from which
transpiration occurs with no water stress and over which rainwa-
ter infiltrates the soil, and (iii) a ‘‘wilting” region, in which transpi-
ration is shut off. The relative areas of these regions vary
dynamically and are diagnostically computed from the model’s
three water prognostic variables and the topographic characteris-
tics of the catchment. By continually partitioning the catchment
into hydrologically distinct regimes and then applying different re-
gime-appropriate physics within each regime, the CLSM should, at
least in principle, provide a more realistic representation of land
surface energy and water processes. The CLSM follows, as a matter
of course, the state of shallow groundwater (down to about 2–
3 m); initialization of the CLSM thus includes an implicit initializa-
tion of shallow groundwater.

The model is designed to capture low frequency (monthly to
seasonal) surface variability and has been evaluated successfully
in a number of model intercomparison projects at the point, regio-
nal, and global scale [23–26]. Soil moisture memory associated
with the model at the global scale has also been reported [27].

2.2. Data sources

For global scale studies with the CLSM, the Earth’s land surface
is first discretized into 36,716 hydrological catchments derived
from high-resolution (1 km) digital elevation data. The average size
of these surface elements is 3800 km2. For technical reasons having
do with coupling the CLSM to an Atmospheric General Circulation
Model (AGCM), the regular atmospheric grid is then overlaid on
top of the hydrological catchments, and catchments found to strad-
dle adjacent grid cells are separated into independent surface ele-
ments, one inside each grid cell. Of particular relevance here, Sri
Lanka is divided into 18 catchments that are further sub-divided
(by the overlaid 0.25� atmospheric grid) into 165 tiles – the basic
modeling units for this study. Model parameters were derived
from a variety of state-of-the-art global datasets: vegetation classi-
fication was based on 1 km land cover characteristics [28], and soil
texture classification came from 50 � 50 global maps [29].

Berg et al. [30] merged output from the European Center for
Medium-Range Weather Forecast (ECMWF) global reanalysis
(ERA-15) with observed surface meteorological fields (precipita-
tion, radiation and temperature) to produce a global, 0.5�, 6-hourly
forcing dataset for the period 1979–1993. The processed data in-
clude precipitation, shortwave and longwave radiation, wind, sur-
face pressure, specific humidity, and 2 m air temperature. For the
current study, monthly rainfall measurements from 287 Sri Lankan
stations (gray dots in Fig. 1b), gridded to a resolution of 0.25�, were
used for the spatial downscaling and additional bias-correction of
the precipitation component of the Berg data. The downscaled,
bias-corrected data were used to force the 165 catchment tiles in
Sri Lanka over 1979–1993. Simulated streamflow production was
compared to monthly streamflow observations at 22 sites obtained
from the Sri Lanka Department of Irrigation and Mahaweli Author-
ity of Sri Lanka (Fig. 1b and Table 1). These 22 stations were se-
lected from 140 stations with long records based on the
completeness of their records, their ability to represent different
climate regimes on the island, and the minimal impact of reservoir
operation on the station data. Occasionally, for some stations, data
for particular months are missing.

We use model-based estimates for the soil moisture initializa-
tion, as well. Direct measurements of soil moisture are still lacking
in many parts of the world, particularly outside parts of Asia and
North America. Certain instruments aboard Earth-orbiting satel-
lites (past, current, and planned) can provide soil moisture esti-
mates at various temporal and spatial timescales, but only down
to a few centimeters in depth at most, and generally not in regions
of dense vegetation. Therefore, we estimate soil moisture by forc-
ing CLSM with observations-based meteorological forcing, as de-
scribed above. This general approach, popular in recent years
[15,31–33], provides soil moisture estimates that reflect an inte-
gration of antecedent meteorological forcing, using physically-
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Fig. 1. (a) Major river basins in Sri Lanka and contour map of mean annual precipitation. (b) Gray circles are rain gauge stations. R1–R22 depict locations of streamflow
measurement stations (Table 1).
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based representations of hydrological processes. A relatively rainy
March and April, for example, will produce an appropriately rela-
tively wet soil moisture initial condition for the first of May.

3. Performance of the model

The streamflows generated by CLSM when forced with the
observations-based meteorological data (the ‘‘CTRL” experiment,
see Table 2) are compared with streamflow measurements at 22
stations that span a variety of climatic and topographic conditions
(Fig. 1b, Table 1). The observed streamflows were normalized by
Table 1
Details of streamflow measuring stations

Station Location Catchment

Latitide (N) Longitude (E) Elevation (m) Area (km2)

Glencourse (R1) 6.974 80.180 18 1463
Kitulgala (R2) 6.991 80.412 56 388
Holombowa (R3) 7.193 80.262 53 155
Putupaula (R4) 6.611 80.065 2 2598.
Ellagawa (R5) 6.731 80.216 4 1393.
Dela (R6) 6.622 80.452 29 220.
Ratnapura (R7) 6.675 80.400 14 604
Agaliya (R8) 6.187 80.195 10 696
Jesmin Dam (R9) 6.344 80.333 27 361
Bopagoda (R10) 6.155 80.484 18 442
Wellawaya (R11) 6.731 81.106 154 160
Kataragama (R12) 6.419 81.329 34 787
Angamedilla (R13) 7.849 80.902 67 1363
Peradeniya (R14) 7.258 80.590 463 1167
Weragantota (R15) 7.316 80.986 76 4092
Elahera (R16) 7.679 80.756 133 774
Talawakelle (R17) 6.940 80.662 1200 297
Yakawewa (R18) 8.723 80.680 70 110
Alawwa (R19) 7.291 80.240 49 804
Badalgama (R20) 7.302 79.980 12 1360
Girialla (R21) 7.324 80.115 27 1191
Horowapotana (R22) 8.576 80.878 44 942
catchment area; both observed and simulated streamflows are
thus expressed in units of mm/month.

Figs. 2 and 3 compare the monthly time series of simulated and
observed runoff for the 22 stations. The simulations and the obser-
vations are in reasonable agreement at most of the stations. When
the comparison is weak, a closer look at the observed 0.25�
monthly precipitation time series shows (in most cases) that the
precipitation data seem to be inconsistent with the independent
streamflow measurements at the station. This may be due to
known weaknesses in the observations of large flows (e.g.
Putupaula 1987–1988, Alawwa (1979, 1990–1991)), and there
may be drifts in the calibration of the observing system, as at Aga-
liya from 1989 to 1991. Additional differences between the ob-
served and simulated values, for all stations, may stem from the
scale disparity between the ECMWF reanalysis forcings and local
catchments and, of course, from deficiencies in the model’s
physical formulations.

For our subsequent analyses, we accept the fact that at some
stations, the CLSM products do not, either due to model or
observational error, match the observations well. We in fact focus
our analyses on those eight stations for which the temporal r2
Table 2
Experiment details: see text for a comprehensive description

Exp.
name

Experiment details

CTRL Perfectly predicted meteorological forcings with perfectly initialized
soil moisture

FC-WI Prescribed mean seasonal cycles of the observed forcings with
initialized soil moisture at the beginning of 2-month forecast

FC-W01 Same as FC-WI but (re-)initializing soil moisture every day
FC-W05 Same as FC-W01 but (re-)initializing soil moisture every 5 days
FC-W10 Same as FC-W01 but (re-)initializing soil moisture every 10 days
FC-WC Prescribed mean seasonal cycles of the observed forcings with no

knowledge of initial soil moisture conditions
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values between observed and simulated monthly streamflow are
higher than 0.66 – that is, where the combination of model physics
and available forcing data together explain two-thirds or more of
the observed streamflow variance. After all, our goal from here on
is not to validate the CLSM but rather to use it in controlled studies
to determine the source of any streamflow prediction skill that does
exist in the model. (Note that our skill diagnostic focuses on the
ability of the model to reproduce streamflow variations in the time
rather than long-term means. For forecasting, prediction of varia-
tions is key; presumably model biases in the mean can be scaled
away. Figs. 2 and 3 show that some large biases in the long-term
mean streamflow simulation do exist at some catchments.) We
note that our analyses were also performed at the other stations,
and though the results at these stations are somewhat noisier, they
essentially agree with those described below. The eight stations
that were chosen include two stations (Peradeniya and Glencourse)
that are affected by flow modifications due to construction of reser-
voirs, but these influences are modest [7].

4. Experiment design

We assume here that, regardless of lead time, skill in stream-
flow forecasting in non-snow areas has three potential sources:
(i) the accurate prediction of forcing anomalies (mainly, precipita-
tion) during the forecast period, (ii) knowledge of soil moisture
anomalies at the beginning of the forecast period, which deter-
mines the ‘preconditioning’ of the soil to the generation of large
runoff efficiencies, and (iii) the underlying mean seasonal cycle
of streamflow (some months typically have more streamflow than
others), which mainly reflects the mean seasonal cycles of the pre-
cipitation and radiation forcing in the region. Our goal in this sec-
tion is to design experiments that isolate the second contribution
to streamflow forecast skill.

The contribution of the third (mean seasonality) source is quan-
tified by repeating the simulations underlying Figs. 2 and 3 with
two restrictions: a complete lack of knowledge of forcing anoma-
lies, and a complete lack of information regarding soil moisture
anomaly initialization. These restrictions are imposed by forcing
the model with the mean seasonal cycle of the observed forcing
(precipitation, radiation, etc.) as derived from the multiple years
of forcing used for CTRL, and by resetting soil moisture every day
to its climatological value for that time of year as determined from
the output of the 15-year CTRL experiment. This experiment is re-
ferred to below as FC-WC, shorthand for ‘‘forcing climatology, wet-
ness (soil moisture) climatology”. Simply put, this experiment
provides streamflow ‘‘predictions” drawn from the climatological
seasonal cycle of streamflow at the station as produced by the
model – predictions reflecting solely the mean seasonal cycles of
forcing and soil moisture in the basin. Consecutive 2-month sub-
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sets of the single FC-WC simulation for each watershed are inter-
preted as individual 2-month forecasts, forecasts made in the ab-
sence of any information on forcing anomalies or soil moisture
anomalies.

In a second set of simulations, the mean seasonal cycles of the
observed forcing are imposed (as in FC-WC) but the soil moisture
is reset to its value from CTRL at the beginning of each 2-month
forecast period. In essence, the CTRL experiment here is used as
an offline land data assimilation system for generating realistic ini-
tial soil moistures, a system of the type that can be run in real-time
as part of a true, operational forecast system [15]. At each of the
eight watersheds considered, a series of 2-month forecasts are per-
formed starting on the first day of each month in the 15-year per-
iod. We refer to this set as FC-WI, short for ‘‘forcing climatology,
wetness (soil moisture) initialized”. For the months following the
soil moisture initialization, simulated streamflows have only two
sources of skill: the initialization and the mean seasonality of
streamflow, as in FC-WC. The forecasts in FC-WC gain no skill
whatsoever from the accurate prediction of forcing anomalies
(rainfall, etc.).

For context, we interpret CTRL as a third set of ‘‘forecasts” –
each consecutive 2-month subset of CTRL is considered a forecast
in which the soil moisture is initialized accurately (as in FC-WI)
and all of the meteorological forcing during the forecast period is
predicted perfectly, at all timescales. (Note that ‘‘perfect” here does
not mean error-free; the forcing used may indeed fraught with er-
rors. By ‘‘perfect”, we mean that the forcing is predicted correctly
to within the accuracy of measurements during the forecast peri-
od.) Consequently, the CTRL forecasts derive skill from knowledge
of soil moisture initialization, and knowledge of forcing during the
forecast period. CTRL thus provides the upper limit to the forecast
skill achievable by the model from all three sources. Such skill will
never, of course, be reached in practice due to significant, inherent
limitations imposed by nature (chaos) in our ability to predict the
forcing.

We process the results as follows. As before, we use the r2 value
between the streamflows produced by each simulation and the
monthly observations to characterize forecast skill. The contribu-
tion of realistic soil moisture initialization to streamflow forecast
skill is thus the skill from FC-WI above the baseline skill from
FC-WC, i.e., r2

FCWI � r2
FCWC. Similarly, the combined contribution of

realistic soil moisture initialization and a perfect prediction of forc-
ing to the streamflow forecast skill is r2

CTRL � r2
FCWC. We compute the

diagnostic a as

a ¼ r2
FCWI � r2

FCWC

r2
CTRL � r2

FCWC

ð1Þ

and interpret a as the fraction of the maximum possible skill that could
be achieved (over the baseline skill, from FC-WC) that stems from soil
moisture initialization alone. Again, r2

CTRL � r2
FCWC is an overestimate of

this maximum possible skill, since chaos prevents such a perfect pre-
diction of forcing. As a result, a is indeed a lower bound for the relative
contribution of soil moisture initialization to forecast skill.
5. Results: impact of initial soil moisture state

5.1. Monthly forecasts

Results for the two-month forecast are shown in Fig. 4. The first
histogram bar in each panel shows r2

CTRL, the skill level for CTRL. The
final histogram bar shows r2

FCWC, the minimum baseline skill level
associated with seasonality. The second histogram bar shows the
skill levels for 30-day streamflow forecasts under realistic soil
moisture initialization and climatological forcing, r2

FCWI. The value
of a for the watershed is provided inside each panel. The panels
are ordered in terms of the skill found in CTRL, with the basin
showing the most skill presented first.

For the first month of forecast, the values of a for the eight ba-
sins range from about 0.1 to 0.6. In other words, even if a forecast
system could provide perfect predictions of forcing throughout the
forecast period, a significant fraction of the forecast skill would
nevertheless come from the soil moisture initialization alone. Fig.
4 indeed reveals the main result of this paper: realistic soil mois-
ture initialization, an achievable element of today’s forecast sys-
tems, can provide useful information on future streamflow
volumes, information that can be of relevance to water resources
management. Given that forcing predictions can never be perfect,
the true relative contributions of ‘‘perfect” soil moisture initializa-
tion to total achievable skill must be higher still – perhaps signifi-
cantly higher.

The third histogram bar in Fig. 4 shows the skill level for the
second month of forecast. These skill levels are, as expected, lower
than those for the first month, simply because initialization has a
reduced impact as one moves farther away from the forecast start
date. In fact, for the first three watersheds, soil moisture initializa-
tion appears to provide no skill whatsoever to streamflow predic-
tion in the second month. Even so, for the remaining five
watersheds, the alpha values range from 0.1 to 0.3. In other words,
for these latter watersheds, the CLSM appears to capture soil mois-
ture memory adequately enough to allow the initial soil moisture
conditions to provide some skill to streamflow prediction at this
longer lead. Note that for the second forecast month, atmospheric
initialization (the key to rainfall prediction at synoptic timescales)
should play no role in runoff production (aside from its impact on
soil moisture in the first week or so of the forecast), suggesting
that the values shown for CTRL are indeed much higher than those
that could be achieved with a standard forecast system. The rela-
tive importance of soil moisture initialization to total achievable
skill at 2 months is thus probably much higher than suggested
by Fig. 4.
5.2. Seasonality of initialization’s contribution

The significant climatic processes that bring rainfall to Sri Lanka
are the inter-tropical convergence zone (April–June, October–
November), the easterly jet (July and August), the monsoon (Octo-
ber–December), and orographic rainfall in the western hill slopes
(May–September) and eastern hill slopes (December–February)
[34,7]. No clear-cut method is thus available for specifying seasons
in Sri Lanka. For our analysis, we will consider January–March
(JFM) and July–September (JAS) as inter-monsoon periods and
April–June (AMJ) and October–December (OND) as monsoon peri-
ods, in rough agreement with conventional definitions.

Fig. 5 shows a repeat of Fig. 4 (but showing only the skill level
for the first month of forecast), with the results broken down by
monsoon and inter-monsoon period. A distinction is seen between
the results for Yakawewa (R18) and Horowapotana (R22) and those
for the remaining six considered watersheds: for Yakawewa and
Horowapotana, soil moisture initialization contributes much more
to streamflow prediction skill during inter-monsoon seasons,
whereas for the other six watersheds, it contributes significantly
more during monsoon seasons. This distinction is interesting be-
cause the first two watersheds are physically removed from the
other six. The first two lie in the northern, drier part of the island,
and the other six lie in the much wetter southwestern part of the
island. Naturally, the limited nature of this study prevents firm
conclusions regarding such distinctions. Still, based on Fig. 5, we
can speculate that for wetter areas, land moisture initialization is
more important during monsoon periods, and for drier areas, it is
more important during inter-monsoon periods.
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5.3. Inferences regarding prediction at shorter timescales

Streamflow prediction at timescales shorter than a month can-
not be analyzed directly in this study because the streamflow val-
idation data are available only in the form of monthly totals.
Nevertheless, useful inferences regarding prediction at shorter
leads can be made through a simple summing procedure. We pro-
ceed as follows. We repeat the forecast simulations comprising FC-
WI, except now, instead of running 2-month forecasts with the cli-
matological forcing, we run N-day forecasts (N ¼ 1;5;10, with
experiments labeled FC-W01, FC-W05, and FC-W10, respectively)
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Fig. 4. Skill of streamflow forecasts ðr2Þ for CTRL, first month of 2-month forecast [FC-WI
watersheds. Corresponding a values are written on each panel.
with the climatological forcing, each forecast initialized with the
appropriate value from CTRL (CTRL output is available for each
day of the 15-year period.). For example, for June of 1980, six 5-
day forecasts are performed. They are initialized on June 1, 6, 11,
16, 21, and 26 with the CTRL values for those dates, and they pro-
duce six 5-day streamflow predictions. The six 5-day predictions
are summed to a monthly total that is compared to the observed
monthly total for June of 1980.

Fig. 6 shows the results. As before, by the design of the analysis
(we are comparing to observed monthly streamflows), the histo-
gram bars for CTRL and FC-WC are identical to those in Fig. 4.
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The interior bars show the forecast skill resulting from realistic soil
moisture initialization for 1-day, 5-day, and 10-day streamflow
forecasts, when these forecasts are summed to monthly totals. As
expected, the forecast skill associated with soil moisture initializa-
tion decreases with increasing lead. Notice, however, that the in-
ferred skill for the 1-day forecasts is quite high, almost the same
as that for CTRL. This is particularly true in the wetter catchments,
reflecting, at least in part, the fact that much of the streamflow
generated in these catchments comes from baseflow, which is a di-
rect function of soil moisture rather than of incident precipitation.
In other words, because baseflow does not depend directly on inci-
dent precipitation, the ‘‘predicted” precipitation could be quite
wrong and the runoff would still be close to that in CTRL. As the
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Fig. 5. Breakdown analysis of Fig. 4 by monsoon and inte
lead increases to 10 days, the effect of the poorly predicted precip-
itation on the total soil moisture (and thus on baseflow) becomes
larger, and the skill is reduced. Again, we are unable here to per-
form a direct evaluation of streamflow prediction at these shorter
timescales. Nevertheless, from this indirect analysis, we can infer
that soil moisture initialization adds a substantial amount of skill
to streamflow prediction at submonthly leads.

5.4. Implications for streamflow prediction across Sri Lanka

Based on the significant skill levels associated with land mois-
ture initialization in Figs. 4 and 5, we make the (otherwise unsup-
ported) assumption here that the model and forcing observations
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are adequate for a general analysis of soil moisture initialization
impact on streamflow across Sri Lanka, not just at the eight exam-
ined sites. The nationwide analysis gives a broad, if approximate,
overview of how soil moisture affects streamflow prediction as a
function of season and geographical location.

Because we do not have streamflow measurements across Sri
Lanka to compute spatial distributions of r2 values, we instead
computed cross correlations between soil moisture on a given
day and simulated monthly runoff fraction (with a lag time of 1–
3 months) following that day. The seasonal cycles of the data were
removed prior to the calculations. Fig. 7 shows the correlation
coefficient (r, essentially the cross correlation between anomalies)
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Fig. 6. Skill of forecast at sub-monthly timescale: r2 values for
between the soil moisture on a given day and the simulated runoff
fraction during the first month (first column), the second month
(second column) and the third month (third column) following
that day, for each of the four seasons (one season per row), as com-
puted in CTRL. (The particular days of soil moisture examined were
indeed the first days of each month.) Again, we are assuming here
that the model captures, to first order, the impact of soil moisture
memory on streamflow production. For the first month, correla-
tions are high (and statistically significant at a 95% confidence le-
vel, though see the caveat below) across most of the island,
particularly during AMJ and JAS. For months 2 and 3, no significant
correlations exist for JFM, and almost none exist for OND. Across
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the island, correlations remain large for months 2 and 3 for AMJ
and JAS. Perhaps these are the seasons for which useful streamflow
prediction in Sri Lanka is most achievable.

The areal extents of the statistically significant local correla-
tions shown in Fig. 7 may, however, be overestimated, given
large-scale spatial correlations in the soil moisture and runoff
fields. A superior significance analysis would not consider the
catchment products in isolation. To avoid this problem – to deter-
mine, to first order, the lags and seasons showing significant corre-
lations for Sri Lanka as a whole – we computed cross correlations
between island-wide average soil moisture anomalies and island-
wide runoff fraction anomalies, for each season and each lead time
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Fig. 7. Lagged correlation coefficient between monthly runoff fraction and soil moisture a
season, each column corresponds to a soil moisture lag time (1–3 months). Shaded areas s
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separately. The island-wide cross correlation (IWC) values are pro-
vided inside each panel in Fig. 7. Island-wide statistically signifi-
cant correlations are seen for AMJ at all three leads. (Note the
95% confidence level applicable here is 0.3, based on Monte Carlo
techniques.) The island-wide values are not significant in other
seasons.

6. Discussion and summary

While both soil moisture initialization and accurate precipita-
tion forecasts can contribute to accurate streamflow forecasts,
realistic soil moisture initialization is generally far more achievable
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(through real-time land data analysis) than is the accurate predic-
tion of precipitation. Here, we examine the relative contribution of
soil moisture initialization to the skill of streamflow forecasts in
several watersheds on the tropical island of Sri Lanka. Gridded
reanalysis-based surface meteorological forcings were merged
with gridded observed precipitation measurements to produce a
meteorological forcing dataset used to drive the Catchment LSM
in offline mode, thereby producing simulated runoff and soil mois-
ture at the catchment scale across the island. Monthly streamflow
measurements from 22 watersheds, located at different altitudes
and in various climatic settings, provided the data to evaluate
model performance. The streamflow variations were, in general,
reasonably simulated. Computed r2 values between the simulated
and observed monthly runoff at the 22 stations varied from 0.23 to
0.75. For our further analyses (looking at streamflow prediction at
timescales ranging from 1 day to 2 months), we focused on the
eight stations for which the land model is found to perform partic-
ularly well, i.e., the eight stations for which the r2 values between
simulated and observed runoff are greater than 0.66.

The study shows that the contribution of the initial soil mois-
ture state to monthly streamflow forecast skill is about 10–60%
of that achieved via both initialization and the ‘‘perfect” prediction
of precipitation (and other meteorological forcing) over the month.
The contribution is reduced to 0%–30% for the second month of the
forecast. Because a perfect prediction of atmospheric forcing is
impossible to achieve in practice, the relative contribution of real-
istic soil moisture initialization to achievable streamflow forecast
skill is necessarily higher. Analysis of shorter forecast leads (sub-
monthly) shows the expected increase in the relative contribution
as the lead time decreases. For drier catchments, soil moisture ini-
tialization appears to have a stronger impact on streamflow fore-
cast skill during inter-monsoon seasons, whereas in wetter
catchments, the opposite appears to be true.

An island-wide study of soil moisture as a predictor in stream-
flow forecasts was then performed. Streamflow during AMJ is par-
ticularly well correlated with earlier soil moisture (lag up to
3 months), suggesting that this may be the season for which
streamflow in Sri Lanka as a whole is most predictable.

Overall, our results indicate that accurate soil moisture initiali-
zation can contribute to the generation of useful streamflow pre-
dictions. The forecast skill could, of course, be further improved
if the model’s formulations were improved. The simulation frame-
work used here can perhaps also serve as a valuable tool for risk
assessment studies on floods, landslides and malaria. Flood and
landslide risk are affected by soil moisture and/or the associated
streamflow, and malaria risk is sensitive to both pool formation
(for which saturated area, an output variable of CLSM, is a good
proxy) and streamflow extremes.
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