8,508 research outputs found
The importance of GRM gravity observations in continental regions
Altimetric satellites showed the existence of gravity anomalies with wavelengths between 1500 km and 3000 km which correlated with residual depth anomalies. It was suggested that there is also an even smaller scale convective circulation with a wavelength of less than 500 km. Numerical experiments and SEASAT profiles demonstrate that similar small scale circulation must also exist near fracture zones. The mantle therefore must contain at least three scales of circulation: (1) comparable to the plate dimensions, the large scale circulation, which returns material from the Island arcs to the ridges; (2) an intermediate scale comparable to the depth of the upper mantle; and (3) a small scale comparable to the thickness of the asthenosphere. This picture was established by observations of gravity and bathymetry in oceanic regions
Who is coming from Vanuatu to New Zealand under the new Recognised Seasonal Employer (RSE) program?
New Zealand’s new Recognised Seasonal Employer (RSE) program allows workers from the Pacific Islands to come to New Zealand for up to seven months to work in the horticulture and viticulture industries. One of the explicit objectives of the program is to encourage economic development in the Pacific. In this paper we report on the results of a baseline survey taken in Vanuatu, which allows us to
examine who wants to participate in the program, and who is selected amongst those interested. We find the main participants are males in their late 20s to early
40s, most of whom are married and have children. Most workers are subsistence farmers in Vanuatu and have not completed more than 10 years of schooling. Such
workers would be unlikely to be accepted under existing migration channels. Nevertheless, we find RSE workers from Vanuatu to come from wealthier households, and have better English literacy and health than individuals not applying
for the program. Lack of knowledge about the policy and the costs of applying appear to be the main barriers preventing poorer individuals applying
Antiferromagnetism and Superconductivity in layered organic conductors: Variational cluster approach
The -(ET)X layered conductors (where ET stands for BEDT-TTF) are
studied within the dimer model as a function of the diagonal hopping
and Hubbard repulsion . Antiferromagnetism and d-wave superconductivity are
investigated at zero temperature using variational cluster perturbation theory
(V-CPT). For large , N\'eel antiferromagnetism exists for ,
with . For fixed , as is decreased (or pressure
increased), a superconducting phase appears. When is
decreased further, the a order takes over. There is a critical value
of of beyond which the AF and dSC phases are separated
by Mott disordered phase.Comment: 4 pages, 4 figures. Investigation of the d_xy phase added +
discussion of gap symmetr
Studies of auroral X-ray imaging from high altitude spacecraft
Results of a study of techniques for imaging the aurora from a high altitude satellite at X-ray wavelengths are summarized. The X-ray observations allow the straightforward derivation of the primary auroral X-ray spectrum and can be made at all local times, day and night. Five candidate imaging systems are identified: X-ray telescope, multiple pinhole camera, coded aperture, rastered collimator, and imaging collimator. Examples of each are specified, subject to common weight and size limits which allow them to be intercompared. The imaging ability of each system is tested using a wide variety of sample spectra which are based on previous satellite observations. The study shows that the pinhole camera and coded aperture are both good auroral imaging systems. The two collimated detectors are significantly less sensitive. The X-ray telescope provides better image quality than the other systems in almost all cases, but a limitation to energies below about 4 keV prevents this system from providing the spectra data essential to deriving electron spectra, energy input to the atmosphere, and atmospheric densities and conductivities. The orbit selection requires a tradeoff between spatial resolution and duty cycle
Harmonic entanglement with second-order non-linearity
We investigate the second-order non-linear interaction as a means to generate
entanglement between fields of differing wavelengths. And show that perfect
entanglement can, in principle, be produced between the fundamental and second
harmonic fields in these processes. Neither pure second harmonic generation,
nor parametric oscillation optimally produce entanglement, such optimal
entanglement is rather produced by an intermediate process. An experimental
demonstration of these predictions should be imminently feasible.Comment: 4 pages, 4 figure
Spin Bose-Metal phase in a spin-1/2 model with ring exchange on a two-leg triangular strip
Recent experiments on triangular lattice organic Mott insulators have found
evidence for a 2D spin liquid in proximity to the metal-insulator transition. A
Gutzwiller wavefunction study of the triangular lattice Heisenberg model with
appropriate four-spin ring exchanges has found that the projected spinon Fermi
sea state has a low variational energy. This wavefunction, together with a
slave particle gauge theory, suggests that such spin liquid possesses spin
correlations that are singular along surfaces in momentum space ("Bose
surfaces"). Signatures of this state, which we refer to as a "Spin Bose-Metal"
(SBM), are expected to be manifest in quasi-1D ladder systems: The discrete
transverse momenta cut through the 2D Bose surface leading to a distinct
pattern of 1D gapless modes. Here we search for a quasi-1D descendant of the
triangular lattice SBM state by exploring the Heisenberg plus ring model on a
two-leg strip (zigzag chain). Using DMRG, variational wavefunctions, and a
Bosonization analysis, we map out the full phase diagram. Without ring exchange
the model is equivalent to the J_1 - J_2 Heisenberg chain, and we find the
expected Bethe-chain and dimerized phases. Remarkably, moderate ring exchange
reveals a new gapless phase over a large swath of the phase diagram. Spin and
dimer correlations possess particular singular wavevectors and allow us to
identify this phase as the hoped for quasi-1D descendant SBM state. We derive a
low energy theory and find three gapless modes and one Luttinger parameter
controlling all power laws. Potential instabilities out of the zigzag SBM give
rise to other interesting phases such as a period-3 VBS or a period-4 Chirality
order, which we discover in the DMRG; we also find an interesting SBM state
with partial ferromagnetism.Comment: 30 pages, 23 figure
Discrete Lie Advection of Differential Forms
In this paper, we present a numerical technique for performing Lie advection
of arbitrary differential forms. Leveraging advances in high-resolution finite
volume methods for scalar hyperbolic conservation laws, we first discretize the
interior product (also called contraction) through integrals over Eulerian
approximations of extrusions. This, along with Cartan's homotopy formula and a
discrete exterior derivative, can then be used to derive a discrete Lie
derivative. The usefulness of this operator is demonstrated through the
numerical advection of scalar fields and 1-forms on regular grids.Comment: Accepted version; to be published in J. FoC
Quantum entanglement between a nonlinear nanomechanical resonator and a microwave field
We consider a theoretical model for a nonlinear nanomechanical resonator
coupled to a superconducting microwave resonator. The nanomechanical resonator
is driven parametrically at twice its resonance frequency, while the
superconducting microwave resonator is driven with two tones that differ in
frequency by an amount equal to the parametric driving frequency. We show that
the semi-classical approximation of this system has an interesting fixed point
bifurcation structure. In the semi-classical dynamics a transition from stable
fixed points to limit cycles is observed as one moves from positive to negative
detuning. We show that signatures of this bifurcation structure are also
present in the full dissipative quantum system and further show that it leads
to mixed state entanglement between the nanomechanical resonator and the
microwave cavity in the dissipative quantum system that is a maximum close to
the semi-classical bifurcation. Quantum signatures of the semi-classical
limit-cycles are presented.Comment: 36 pages, 18 figure
- …