44 research outputs found

    Astrophysical implications of hypothetical stable TeV-scale black holes

    Get PDF
    We analyze macroscopic effects of TeV-scale black holes, such as could possibly be produced at the LHC, in what is regarded as an extremely hypothetical scenario in which they are stable and, if trapped inside Earth, begin to accrete matter. We examine a wide variety of TeV-scale gravity scenarios, basing the resulting accretion models on first-principles, basic, and well-tested physical laws. These scenarios fall into two classes, depending on whether accretion could have any macroscopic effect on the Earth at times shorter than the Sun's natural lifetime. We argue that cases with such effect at shorter times than the solar lifetime are ruled out, since in these scenarios black holes produced by cosmic rays impinging on much denser white dwarfs and neutron stars would then catalyze their decay on timescales incompatible with their known lifetimes. We also comment on relevant lifetimes for astronomical objects that capture primordial black holes. In short, this study finds no basis for concerns that TeV-scale black holes from the LHC could pose a risk to Earth on time scales shorter than the Earth's natural lifetime. Indeed, conservative arguments based on detailed calculations and the best-available scientific knowledge, including solid astronomical data, conclude, from multiple perspectives, that there is no risk of any significance whatsoever from such black holes.Comment: Version2: Minor corrections/fixed typos; updated reference

    Iron and Nickel spectral opacity calculations in conditions relevant for pulsating stellar envelopes and experiments

    Full text link
    Seismology of stars is strongly developing. To address this question we have formed an international collaboration OPAC to perform specific experimental measurements, compare opacity calculations and improve the opacity calculations in the stellar codes [1]. We consider the following opacity codes: SCO, CASSANDRA, STA, OPAS, LEDCOP, OP, SCO-RCG. Their comparison has shown large differences for Fe and Ni in equivalent conditions of envelopes of type II supernova precursors, temperatures between 15 and 40 eV and densities of a few mg/cm3 [2, 3, 4]. LEDCOP, OPAS, SCO-RCG structure codes and STA give similar results and differ from OP ones for the lower temperatures and for spectral interval values [3]. In this work we discuss the role of Configuration Interaction (CI) and the influence of the number of used configurations. We present and include in the opacity code comparisons new HULLAC-v9 calculations [5, 6] that include full CI. To illustrate the importance of this effect we compare different CI approximations (modes) available in HULLAC-v9 [7]. These results are compared to previous predictions and to experimental data. Differences with OP results are discussed.Comment: 4 pages, 3 figures, conference Inertial Fusion Sciences and Applications, Bordeaux, 12th to 16th September 2011; EPJ web of Conferences 201

    Theoretical and experimental activities on opacities for a good interpretation of seismic stellar probes

    Full text link
    Opacity calculations are basic ingredients of stellar modelling. They play a crucial role in the interpretation of acoustic modes detected by SoHO, COROT and KEPLER. In this review we present our activities on both theoretical and experimental sides. We show new calculations of opacity spectra and comparisons between eight groups who produce opacity spectra calculations in the domain where experiments are scheduled. Real differences are noticed with real astrophysical consequences when one extends helioseismology to cluster studies of different compositions. Two cases are considered presently: (1) the solar radiative zone and (2) the beta Cephei envelops. We describe how our experiments are performed and new preliminary results on nickel obtained in the campaign 2010 at LULI 2000 at Polytechnique.Comment: 6 pages, 4 figures, invited talk at SOHO2

    Radiative properties of stellar plasmas and open challenges

    Full text link
    The lifetime of solar-like stars, the envelope structure of more massive stars, and stellar acoustic frequencies largely depend on the radiative properties of the stellar plasma. Up to now, these complex quantities have been estimated only theoretically. The development of the powerful tools of helio- and astero- seismology has made it possible to gain insights on the interiors of stars. Consequently, increased emphasis is now placed on knowledge of the monochromatic opacity coefficients. Here we review how these radiative properties play a role, and where they are most important. We then concentrate specifically on the envelopes of β\beta Cephei variable stars. We discuss the dispersion of eight different theoretical estimates of the monochromatic opacity spectrum and the challenges we need to face to check these calculations experimentally.Comment: 6 pages, 5 figures, in press (conference HEDLA 2010
    corecore