734 research outputs found

    Experimental analysis of sample-based maps for long-term SLAM

    Get PDF
    This paper presents a system for long-term SLAM (simultaneous localization and mapping) by mobile service robots and its experimental evaluation in a real dynamic environment. To deal with the stability-plasticity dilemma (the trade-off between adaptation to new patterns and preservation of old patterns), the environment is represented at multiple timescales simultaneously (5 in our experiments). A sample-based representation is proposed, where older memories fade at different rates depending on the timescale, and robust statistics are used to interpret the samples. The dynamics of this representation are analysed in a five week experiment, measuring the relative influence of short- and long-term memories over time, and further demonstrating the robustness of the approach

    Practical Implementations of Twirl Operations

    Full text link
    Twirl operations, which convert impure singlet states into Werner states, play an important role in many schemes for entanglement purification. In this paper we describe strategies for implementing twirl operations, with an emphasis on methods suitable for ensemble quantum information processors such as nuclear magnetic resonance (NMR) quantum computers. We implement our twirl operation on a general two-spin mixed state using liquid state NMR techniques, demonstrating that we can obtain the singlet Werner state with high fidelity.Comment: 6 pages RevTex4 including 2 figures (fig 1 low quality to save space

    Implementation of NMR quantum computation with para-hydrogen derived high purity quantum states

    Full text link
    We demonstrate the first implementation of a quantum algorithm on a liquid state nuclear magnetic resonance (NMR) quantum computer using almost pure states. This was achieved using a two qubit device where the initial state is an almost pure singlet nuclear spin state of a pair of 1H nuclei arising from a chemical reaction involving para-hydrogen. We have implemented Deutsch's algorithm for distinguishing between constant and balanced functions with a single query.Comment: 7 pages RevTex including 6 figures. Figures 4-6 are low quality to save space. Submitted to Phys Rev

    Extending political participation in China: new opportunities for citizens in the policy process

    Get PDF
    Authoritarian political systems are portrayed as offering few opportunities for citizens to participate in politics – particularly in the policy process. This paper’s contribution is to set out new mechanisms that enable Authoritarian political systems are portrayed as offering few opportunities for citizens to participate in politics – particularly in the policy process. This paper’s contribution is to set out new mechanisms that enable Chinese citizens to evaluate government performance, contribute to decision-making, shape policy agendas and feed back on implementation. Based on fieldwork in the city of Hangzhou, we argue that the local party-state orchestrates citizen participation in the policy process, but members of the public nevertheless do have influence. Political participation is widening in China, but it is still controlled. It is not yet clearly part of a process of democratization, but it does establish the principle of citizen rights to oversee the government

    Cryptogamic ground covers as analogues for early terrestrial biospheres: Initiation and evolution of biologically mediated proto-soils

    Get PDF
    Modern cryptogamic ground covers (CGCs), comprising assemblages of bryophytes (hornworts, liverworts, mosses), fungi, bacteria, lichens and algae, are thought to resemble early divergent terrestrial communities. However, limited in-situ plant and other fossils in the rock record, and a lack of CGC-like soils reported in the pre-Silurian sedimentological record, have hindered understanding of the structure, composition, and interactions within the earliest CGCs. A key question is how the earliest CGC-like organisms drove weathering on primordial terrestrial surfaces (regolith), leading to the early stages of soil development as proto-soils, and subsequently contributing to large-scale biogeochemical shifts in the Earth System. Here, we employed a novel qualitative, quantitative and multi-dimensional imaging approach through X-ray micro-computed tomography, scanning electron, and optical microscopy to investigate whether different combinations of modern CGC organisms from primordial-like settings in Iceland develop organism-specific soil-forming features at the macro- and micro-scales. Additionally, we analysed CGCs growing on hard rocky substrates to investigate the initiation of weathering processes non-destructively in 3D. We show that thalloid CGC organisms (liverworts, hornworts) develop thin organic layers at the surface (<1 cm) with limited subsurface structural development, whereas leafy mosses and communities of mixed-organisms form profiles that are thicker (up to ~7 cm), structurally more complex, and more organic-rich. We term these thin layers and profiles proto-soils. Component analyses from X-ray micro-computed tomography data show that thickness and structure of these proto-soils are determined by the type of colonising organism(s), suggesting that the evolution of more complex soils through the Palaeozoic may have been driven by a shift in body plan of CGC-like organisms from flattened and appressed to upright and leafy. Our results provide a framework for identifying CGC-like proto-soils in the rock record and a new proxy for understanding organism-soil interactions in ancient terrestrial biospheres and their contribution to the early stages of soil-formation

    The drivers of change for the contribution of small farms to regional food security in Europe

    Get PDF
    The capacity of the food system to respond to the economic, demographic and environmental challenges ahead has become a topic of increasing interest, with particular attention to the roles and responsibilities of the different actors to ensure more sustainable food systems that can guarantee food and nutrition security for all. In this paper we approach the need to better understand the factors that can condition the potential contribution of small farms to regional food and nutrition security in Europe, acknowledging the role that small farms play in Europe at present. The analysis is based on a survey to 94 experts from 17 regions (NUTS3 level) in 11 different European countries, which identified the drivers of change according to the regional experts. These drivers were then categorized and their relative relevance assessed. The results indicate that some relevant drivers in the European context are linked to the capacity to adopt technologies and practices allowing adaptation to climate change, and the capacity to connect to food markets, with emphasis in the need for cooperation and collective action. The weight of other more European-specific drivers such as ‘consumer values and habits’ reveal that the future role of small farms will be very dependent on a societal change, with equity becoming a relevant component of consumers’ choice

    Interactions between branched DNAs and peptide inhibitors of DNA repair

    Get PDF
    The RecG helicase of Escherichia coli unwinds both Holliday junction (HJ) and replication fork DNA substrates. Our lab previously identified and characterized peptides (WRWYCR and KWWCRW) that block the activity of RecG on these substrates. We determined that the peptides bind HJ DNA and prevent the binding of RecG. Herein, we present further evidence that the peptides are competitive inhibitors of RecG binding to its substrates. We have generated structural models of interactions between WRWYCR and a junction substrate. Using the fluorescent probe 2-aminopurine, we show that inhibitors interact with highest affinity with HJs (Kd = 14 nM) and ∼4- to 9-fold more weakly with replication fork substrates. The fluorescence assay results agree with the structural model, and predict the molecular basis for interactions between HJ-trapping peptides and branched DNA molecules. Specifically, aromatic amino acids in the peptides stack with bases at the center of the DNA substrates. These interactions are stabilized by hydrogen bonds to the DNA and by intrapeptide interactions. These peptides inhibit several proteins involved in DNA repair in addition to RecG, have been useful as tools to dissect recombination, and possess antibiotic activity. Greater understanding of the peptides’ mechanism of action will further increase their utility

    Why do authoritarian regimes provide public goods? Policy communities, external shocks and ideas in China’s rural social policy making

    Get PDF
    Recent research on authoritarian regimes argues that they provide public goods in order to prevent rebellion. This essay shows that the ‘threat of rebellion’ alone cannot explain Chinese party-state policies to extend public goods to rural residents in the first decade of the twenty-first century. Drawing on theories of policy making, it argues that China’s one-party regime extended public goods to the rural population under the influence of ideas and policy options generated by policy communities of officials, researchers, international organisations and other actors. The party-state centre adopted and implemented these ideas and policy options when they provided solutions to external shocks and supported economic development goals. Explanations of policies and their outcomes in authoritarian political systems need to include not only ‘dictators’ but also other actors, and the ideas they generate

    Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging

    Get PDF
    Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapidly emerging as a valuable research tool. Here, multimodal MSI techniques were employed to characterize a novel aggregated 3D lung adenocarcinoma model, developed by the group to mimic the in vivo tissue. Regions of tumor heterogeneity and the hypoxic microenvironment were observed based on the spatial distribution of a variety of endogenous molecules. Desorption electrospray ionization (DESI)-MSI defined regions of a hypoxic core and a proliferative outer layer from metabolite distribution. Targeted metabolites (e.g., lactate, glutamine, and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm spatial resolution. Protein markers of proliferation (Ki-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model, which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression. Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture highlighted a future methodology with potential applications in cancer research and drug development
    corecore