3 research outputs found

    Induction of androgenesis and production of haploid embryos in anther cultures of borage (Borago officinalis L.)

    Full text link
    [EN] Borage (Borago officinalis L.) is an important medicinal plant with different culinary, pharmaceutical and industrial properties. Unfortunately, there are no published reports on the establishment of protocols to produce DHs in this species up to now. In this work, we show for the first time the induction of borage microspores to become embryogenic calli, from which haploid embryos are produced. In addition, we evaluated the effect of using different flower bud sizes, carbon sources, concentrations of 2,4-D and BAP, cold (4 A degrees C) pretreatments and heat shock treatments. Production of total calli, embryogenic calli and callus-derived embryos was differently affected by the different parameters studied. Our results showed that the use of 5-7 mm-long flower buds, a cold (4 A degrees C) pretreatment during 4 days, a 32 A degrees C heat shock for 3 days, and the addition of 3 % maltose and 2 mgl(-1) 2,4-D and 1 mgl(-1) BAP to the culture medium, was beneficial for embryo production. Overall, this work demonstrates that DH technology is possible in borage, and opens the door for future improvements needed to finally obtain borage DH plants.Eshaghi, ZC.; Abdollahi, MR.; Moosavi, SS.; Deljou, A.; Seguí-Simarro, JM. (2015). Induction of androgenesis and production of haploid embryos in anther cultures of borage (Borago officinalis L.). Plant Cell, Tissue and Organ Culture. 122:321-329. doi:10.1007/s11240-015-0768-5S321329122Abdollahi MR, Moieni A, Javaran MJ (2004) Interactive effects of shock and culture density on embryo induction in isolated microspore culture of Brassica napus L. cv. Global Iranian J Biotech 2:97–100Bohanec B, Neskovic M, Vujicic R (1993) Anther culture and androgenetic plant regeneration in buckwheat (Fagopyrum esculentum Moench). Plant Cell Tissue Organ Cult 35:259–266Calleberg E, Johansson L (1996) Effect of gelling agents on anther cultures. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 23. Springer, Netherlands, pp 189–203Custers JBM, Cordewener JHG, Nöllen Y, Dons JJ, van Lookeren-Campagne MM (1994) Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Rep 13:267–271Ferrie AMR (2013) Advances in microspore culture technology: a biotechnological tool for the improvement of medicinal plants. In: Chandra S et al (eds) Biotechnology for medicinal plants. Springer, Berlin, pp 191–206Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Cult 104:301–309Ferrie AMR, Bethune T, Mykytyshyn M (2011) Microspore embryogenesis in the Apiaceae. Plant Cell Tissue Organ Cult 104:399–406Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375Gamborg OL, Miller RA, Ojiwa K (1968) Nutrient requirements of suspension culture of soybean root callus. Exp Cell Res 50:151–158Guil-Guerrero JL, García-Maroto F, Vilches-Ferrón MA, López-Alonso D (2003) Gamma-linolenic acid from fourteen Boraginaceae species. Ind Crop Prod 18:85–89Horrobin DF (1983) The regulation of prostaglandin biosynthesis by the manipulation of essential fatty acid metabolism. Rev Pure Appl Pharmacol Sci 4:339–383Irikova T, Grozeva S, Rodeva V (2011) Anther culture in pepper (Capsicum annuum L.) in vitro. Acta Physiol Plant 33:1559–1570Lauxen MS, Kaltchuk-Santos E, Hu CY, Callegari-Jacques SM, Bodanese-Zanettini MH (2003) Association between floral bud size and developmental stage in soybean microspores. Braz Arch Biol Technol 46:515–520Leach CR, Mayo O, Bürger R (1990) Quantitatively determined self-incompatibility. Outcrossing in Borago officinalis. Theoret Appl Genetics 79:427–430Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105:427–434Maluszynski M, Kasha KJ, Szarejko I (2003) Published doubled haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer, Dordrecht, pp 309–335Maraschin SF, de Priester W, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726McDonald BE, Fitzpatrick K (1998) Designer Vegetable Oils. In: Mazza G (ed) Functional foods, biochemical and processing aspects. Technomic Publ Co. Inc, Lancaster, pp 265–291Ozkum D, Tipirdamaz R (2002) The effects of cold treatment and charcoal on the in vitro androgenesis of pepper (Capsicum annuum L.). Turk J Bot 26:131–139Parra-Vega V, González-García B, Seguí-Simarro JM (2013a) Morphological markers to correlate bud and anther development with microsporogenesis and microgametogenesis in pepper (Capsicum annuum L.). Acta Physiol Plant 35:627–633Parra-Vega V, Renau-Morata B, Sifres A, Seguí-Simarro JM (2013b) Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult 112:353–360Raquin C (1983) Utilization of different sugars as carbon sources for in vitro cultures of Petuina. Z Pflanzenphysol 111:453–457Salas P, Rivas-Sendra A, Prohens J, Seguí-Simarro JM (2012) Influence of the stage for anther excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica 184:235–250Seguí-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404Seguí-Simarro JM, Nuez F (2006) Androgenesis induction from tomato anther cultures: callus characterization. Acta Hort 725:855–861Seguí-Simarro JM, Corral-Martínez P, Parra-Vega V, González-García B (2011) Androgenesis in recalcitrant solanaceous crops. Plant Cell Rep 30:765–778Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the reprogramming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534Simon JE, Chadwick AF, Craker LE (1984) Herbs: an indexed bibliography. 1971–1980. The scientific literature on selected herbs, and aromatic and medicinal plants of the temperate zone. Archon Books, Hamden, CTSkrzypek E, Czyczyło-Mysza I, Marcińska I, Wędzony M (2008) Prospects of androgenetic induction in Lupinus spp. Plant Cell Tissue Organ Cult 94(2):131–137Snape JW (1989) Doubled haploid breeding: theoretical basis and practical applications. In: Mujeeb-Kazi A, Sitch LA (eds) Review of advances in plant biotechnology, 1985–1988: 2nd international symposium genetic manipulation in crops. Mexico and Manila, CIMMYT and IRRI, pp 19–30Tipirdamaz R, Ellialtioğlu Ş (1998) The effects of cold treatments and activated charcoal on ABA contents of anthers and in vitro androgenesis in eggplant (Solanum melongena L.). In: Tsekos I, Moustakas M (eds) Progress in botanical research, Proceedings of the 1st Balkan botanical congress. Kluwer Academic Publishers, The NetherlandsVagera J, Havranek P (1985) In vitro induction of androgenesis in Capsicum annuum L. and its genetic aspests. Biol Plant 27(1):10–21Zur I, Dubas E, Golemiec E, Szechynska-Hebda M, Golebiowska G, Wedzony M (2009) Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (×Triticosecale Wittm.). Plant Cell Rep 28:1279–128

    Herbal medicine for sports: a review

    Get PDF
    The use of herbal medicinal products and supplements has increased during last decades. At present, some herbs are used to enhance muscle strength and body mass. Emergent evidence suggests that the health benefits from plants are attributed to their bioactive compounds such as Polyphenols, Terpenoids, and Alkaloids which have several physiological effects on the human body. At times, manufacturers launch numerous products with banned ingredient inside with inappropriate amounts or fake supplement inducing harmful side effect. Unfortunately up to date, there is no guarantee that herbal supplements are safe for anyone to use and it has not helped to clear the confusion surrounding the herbal use in sport field especially. Hence, the purpose of this review is to provide guidance on the efficacy and side effect of most used plants in sport. We have identified plants according to the following categories: Ginseng, alkaloids, and other purported herbal ergogenics such asTribulus Terrestris, Cordyceps Sinensis. We found that most herbal supplement effects are likely due to activation of the central nervous system via stimulation of catecholamines. Ginseng was used as an endurance performance enhancer, while alkaloids supplementation resulted in improvements in sprint and cycling intense exercises. Despite it is prohibited, small amount of ephedrine was usually used in combination with caffeine to enhance muscle strength in trained individuals. Some other alkaloids such as green tea extracts have been used to improve body mass and composition in athletes. Other herb (i.e. Rhodiola, Astragalus) help relieve muscle and joint pain, but results about their effects on exercise performance are missing

    Herbal medicine for sports: a review

    No full text
    corecore