44 research outputs found

    Priority setting: what constitutes success? A conceptual framework for successful priority setting

    Get PDF
    BACKGROUND: The sustainability of healthcare systems worldwide is threatened by a growing demand for services and expensive innovative technologies. Decision makers struggle in this environment to set priorities appropriately, particularly because they lack consensus about which values should guide their decisions. One way to approach this problem is to determine what all relevant stakeholders understand successful priority setting to mean. The goal of this research was to develop a conceptual framework for successful priority setting. METHODS: Three separate empirical studies were completed using qualitative data collection methods (one-on-one interviews with healthcare decision makers from across Canada; focus groups with representation of patients, caregivers and policy makers; and Delphi study including scholars and decision makers from five countries). RESULTS: This paper synthesizes the findings from three studies into a framework of ten separate but interconnected elements germane to successful priority setting: stakeholder understanding, shifted priorities/reallocation of resources, decision making quality, stakeholder acceptance and satisfaction, positive externalities, stakeholder engagement, use of explicit process, information management, consideration of values and context, and revision or appeals mechanism. CONCLUSION: The ten elements specify both quantitative and qualitative dimensions of priority setting and relate to both process and outcome components. To our knowledge, this is the first framework that describes successful priority setting. The ten elements identified in this research provide guidance for decision makers and a common language to discuss priority setting success and work toward improving priority setting efforts

    Chromosomal radiosensitivity in head and neck cancer patients: evidence for genetic predisposition?

    Get PDF
    The association between chromosomal radiosensitivity and genetic predisposition to head and neck cancer was investigated in this study. In all, 101 head and neck cancer patients and 75 healthy control individuals were included in the study. The G2 assay was used to measure chromosomal radiosensitivity. The results demonstrated that head and neck cancer patients had a statistically higher number of radiation-induced chromatid breaks than controls, with mean values of 1.23 and 1.10 breaks per cell, respectively (P<0.001). Using the 90th percentile of the G2 scores of the healthy individuals as a cutoff value for chromosomal radiosensitivity, 26% of the cancer patients were radiosensitive compared with 9% of the healthy controls (P=0.008). The mean number of radiation-induced chromatid breaks and the proportion of radiosensitive individuals were highest for oral cavity cancer patients (1.26 breaks per cell, 38%) and pharynx cancer patients (1.27 breaks per cell, 35%). The difference between patients and controls was most pronounced in the lower age group (⩽50 years, 1.32 breaks per cell, 38%) and in the non- and light smoking patient group (⩽10 pack-years, 1.28 breaks per cell, 46%). In conclusion, enhanced chromosomal radiosensitivity is a marker of genetic predisposition to head and neck cancer, and the genetic contribution is highest for oral cavity and pharynx cancer patients and for early onset and non- and light smoking patients

    Spontaneous and radiation-induced chromosomal instability and persistence of chromosome aberrations after radiotherapy in lymphocytes from prostate cancer patients

    Get PDF
    The aim of the study was to compare the spontaneous and ex vivo radiation-induced chromosomal damage in lymphocytes of untreated prostate cancer patients and age-matched healthy donors, and to evaluate the chromosomal damage, induced by radiotherapy, and its persistence. Blood samples from 102 prostate cancer patients were obtained before radiotherapy to investigate the excess acentric fragments and dicentric chromosomes. In addition, in a subgroup of ten patients, simple exchanges in chromosomes 2 and 4 were evaluated by fluorescent in situ hybridization (FISH), before the onset of therapy, in the middle and at the end of therapy, and 1 year later. Data were compared to blood samples from ten age-matched healthy donors. We found that spontaneous yields of acentric chromosome fragments and simple exchanges were significantly increased in lymphocytes of patients before onset of therapy, indicating chromosomal instability in these patients. Ex vivo radiation-induced aberrations were not significantly increased, indicating proficient repair of radiation-induced DNA double-strand breaks in lymphocytes of these patients. As expected, the yields of dicentric and acentric chromosomes, and the partial yields of simple exchanges, were increased after the onset of therapy. Surprisingly, yields after 1 year were comparable to those directly after radiotherapy, indicating persistence of chromosomal instability over this time. Our results indicate that prostate cancer patients are characterized by increased spontaneous chromosomal instability. This instability seems to result from defects other than a deficient repair of radiation-induced DNA double-strand breaks. Radiotherapy-induced chromosomal damage persists 1 year after treatment

    Three Models of Group Choice

    Full text link
    Moral responsibility can be attributed to groups as well as to individuals. Three processes, or models, of group choice are delineated which serve as analogues to the act of choice by an individual. In the constitutive rules model, a group such as a health care team allows actions by individual members to designate actions of the group as a whole. Another approach is for the team to decide to accede to the expertise of one of its members. In the third model, the team functions as a company of equals acting on the basis of mutual understanding achieved by communication. (KIE abstract

    Objective Assessment in Continual Medical Education (CME) Medical Objective Assessment in System Control

    No full text
    Existing examinations in postgraduate education and continuing medical education (CME) are not perfect. Modern assessment does not reflect disadvantages of older responders, for whom more time for reply is needed. Specialists with wide clinical experience may choose more than one correct answer in alternative questions. Reduced ability to remember in older people restricts examination without additional sources of information.We offer an individualised system for testing doctors. It provides personalised choice of examination questions using multiple choice questions with weight characteristics and absence of distractors, interactive cooperation in case of negative answers and the final decision of an expert in relation to the person tested. A special algorithm is proposed for typical questions that combines the advantages of known approaches to testing. The questioning system is complex for the creators of tests, but is more convenient and objective than existing ones for medical doctors.</jats:p
    corecore