6 research outputs found

    Going to sleep in the supine position is a modifiable risk factor for late pregnancy stillbirth; findings from the New Zealand multicentre stillbirth case-control study

    Get PDF
    Objective: Our objective was to test the primary hypothesis that maternal non-left, in particular supine going-to-sleep position, would be a risk factor for late stillbirth (≥28 weeks of gestation). Methods: A multicentre case-control study was conducted in seven New Zealand health regions, between February 2012 and December 2015. Cases (n=164) were women with singleton pregnancies and late stillbirth, without congenital abnormality. Controls (n=569) were women with on-going singleton pregnancies, randomly selected and frequency matched for health region and gestation. The primary outcome was adjusted odds of late stillbirth associated with self-reported going-to-sleep position, on the last night. The last night was the night before the late stillbirth was thought to have occurred or the night before interview for controls. Going to- sleep position on the last night was categorised as: supine, left-side, right-side, propped or restless. Multivariable logistic regression adjusted for known confounders. Results: Supine going-to-sleep position on the last night was associated with increased late stillbirth risk (adjusted odds ratios (aOR) 3.67, 95% confidence interval (CI) 1.74 to 7.78) with a population attributable risk of 9.4%. Other independent risk factors for late stillbirth (aOR, 95% CI) were: BMI (1.04, 1.01 to 1.08) per unit, maternal age ≥40 (2.88, 1.31 to 6.32), birthweight <10th customised centile (2.76, 1.59 to 4.80), and <6 hours sleep on the last night (1.81, 1.14 to 2.88). The risk associated with supine-going-to sleep position was greater for term (aOR 10.26, 3.00 to 35.04) than preterm stillbirths (aOR 3.12, 0.97 to 10.05). Conclusions: Supine going-to-sleep position is associated with a 3.7 fold increase in overall late stillbirth risk, independent of other common risk factors. A public health campaign encouraging women not to go-to-sleep supine in the third trimester has potential to reduce late stillbirth by approximately 9%

    Brief Report: Diagnostic Accuracy of Oral Mucosal Transudate Tests Compared with Blood-Based Rapid Tests for HIV Among Children Aged 18 Months to 18 Years in Kenya and Zimbabwe.

    Get PDF
    BACKGROUND: Gaps persist in HIV testing for children who were not tested in prevention of mother-to-child HIV transmission programs. Oral mucosal transudate (OMT) rapid HIV tests have been shown to be highly sensitive in adults, but their performance has not been established in children. METHODS: Antiretroviral therapy-naive children aged 18 months to 18 years in Kenya and Zimbabwe were tested for HIV using rapid OraQuick ADVANCE Rapid HIV-1/2 Antibody test on oral fluids (OMT) and blood-based rapid diagnostic testing (BBT). BBT followed Kenyan and Zimbabwean national algorithms. Sensitivity and specificity were calculated using the national algorithms as the reference standard. RESULTS: A total of 1776 children were enrolled; median age was 7.3 years (interquartile range: 4.7-11.6). Among 71 children positive by BBT, all 71 were positive by OMT (sensitivity: 100% [97.5% confidence interval (CI): 94.9% to 100%]). Among the 1705 children negative by BBT, 1703 were negative by OMT (specificity: 99.9% [95% CI: 99.6% to 100.0%]). Due to discrepant BBT and OMT results, 2 children who initially tested BBT-negative and OMT-positive were subsequently confirmed positive within 1 week by further tests. Excluding these 2 children, the sensitivity and specificity of OMT compared with those of BBT were each 100% (97.5% CI: 94.9% to 100% and 99.8% to 100%, respectively). CONCLUSIONS: Compared to national algorithms, OMT did not miss any HIV-positive children. These data suggest that OMTs are valid in this age range. Future research should explore the acceptability and uptake of OMT by caregivers and health workers to increase pediatric HIV testing coverage

    Providing “a beam of light to see the gaps”: determinants of implementation of the Systems Analysis and Improvement Approach applied to the pediatric and adolescent HIV cascade in Kenya

    No full text
    Abstract Background Children and adolescents living with HIV have poorer rates of HIV testing, treatment, and virologic suppression than adults. Strategies that use a systems approach to optimize these multiple, linked steps simultaneously are critical to close these gaps. Methods The Systems Analysis and Improvement Approach (SAIA) was adapted and piloted for the pediatric and adolescent HIV care and treatment cascade (SAIA-PEDS) at 6 facilities in Kenya. SAIA-PEDS includes three tools: continuous quality improvement (CQI), flow mapping, and pediatric cascade analysis (PedCAT). A predominately qualitative evaluation utilizing focus group discussions (N = 6) and in-depth interviews (N = 19) was conducted with healthcare workers after implementation to identify determinants of implementation. Data collection and analysis were grounded in the Consolidated Framework for Implementation Research (CFIR). Results Overall, the adapted SAIA-PEDS strategy was acceptable, and the three tools complemented one another and provided a relative advantage over existing processes. The flow mapping and CQI tools were compatible with existing workflows and resonated with team priorities and goals while providing a structure for group problem solving that transcended a single department’s focus. The PedCAT was overly complex, making it difficult to use. Leadership and hierarchy were complex determinants. All teams reported supportive leadership, with some describing in detail how their leadership was engaged and enthusiastic about the SAIA-PEDS process, by providing recognition, time, and resources. Hierarchy was similarly complex: in some facilities, leadership stifled rapid innovation by insisting on approving each change, while at other facilities, leadership had strong and supportive oversight of processes, checking on the progress frequently and empowering teams to test innovative ideas. Conclusion CQI and flow mapping were core components of SAIA-PEDS, with high acceptability and consistent use, but the PedCAT was too complex. Leadership and hierarchy had a nuanced role in implementation. Future SAIA-PEDS testing should address PedCAT complexity and further explore the modifiability of leadership engagement to maximize implementation
    corecore