388 research outputs found
New insight into the molecular control of bacterial functional amyloids.
New insight into the molecular control of bacterial functional amyloids. Front. Cell. Infect. Microbiol. 5:33. doi: 10.3389/fcimb.2015.00033 New insight into the molecular control of bacterial functional amyloid
Life forms of three Senecio species in relation to accumulation and utilization of non-structural carbohydrates
Origins of Chevron Rollovers in Non-Two-State Protein Folding Kinetics
Chevron rollovers of some proteins imply that their logarithmic folding rates
are nonlinear in native stability. This is predicted by lattice and continuum
G\=o models to arise from diminished accessibilities of the ground state from
transiently populated compact conformations under strongly native conditions.
Despite these models' native-centric interactions, the slowdown is due partly
to kinetic trapping caused by some of the folding intermediates' nonnative
topologies. Notably, simple two-state folding kinetics of small single-domain
proteins are not reproduced by common G\=o-like schemes.Comment: 10 pages, 4 Postscript figures (will appear on PRL
Observations on germination and seedling establishment of Senecio erucifolius L. in relation to its northern boundary
Skp is a multivalent chaperone of outer membrane proteins
The trimeric chaperone Skp sequesters outer-membrane proteins (OMPs) within a hydrophobic cage, thereby preventing their aggregation during transport across the periplasm in Gram-negative bacteria. Here, we studied the interaction between Escherichia coli Skp and five OMPs of varying size. Investigations of the kinetics of OMP folding revealed that higher Skp/OMP ratios are required to prevent the folding of 16-stranded OMPs compared with their 8-stranded counterparts. Ion mobility spectrometry–mass spectrometry (IMS–MS) data, computer modeling and molecular dynamics simulations provided evidence that 10- to 16-stranded OMPs are encapsulated within an expanded Skp substrate cage. For OMPs that cannot be fully accommodated in the expanded cavity, sequestration is achieved by binding of an additional Skp trimer. The results suggest a new mechanism for Skp chaperone activity involving the coordination of multiple copies of Skp in protecting a single substrate from aggregation
Membrane Structure of Aquaporin Observed with Combined Experimental and Theoretical Sum Frequency Generation Spectroscopy
Outer membrane protein folding from an energy landscape perspective
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding
- …
