873 research outputs found

    Positivity violation for the lattice Landau gluon propagator

    Full text link
    We present explicit numerical evidence of reflection-positivity violation for the lattice Landau gluon propagator in three-dimensional pure SU(2) gauge theory. We use data obtained at very large lattice volumes (V = 80^3, 140^3) and for three different lattice couplings in the scaling region (beta = 4.2, 5.0, 6.0). In particular, we observe a clear oscillatory pattern in the real-space propagator C(t). We also verify that the (real-space) data show good scaling in the range t \in [0,3] fm and can be fitted using a Gribov-like form. The violation of positivity is in contradiction with a stable-particle interpretation of the associated field theory and may be viewed as a manifestation of confinement.Comment: 5 pages, 6 figures; minor modifications in the text and in the bibliograph

    Inequalities for trace anomalies, length of the RG flow, distance between the fixed points and irreversibility

    Full text link
    I discuss several issues about the irreversibility of the RG flow and the trace anomalies c, a and a'. First I argue that in quantum field theory: i) the scheme-invariant area Delta(a') of the graph of the effective beta function between the fixed points defines the length of the RG flow; ii) the minimum of Delta(a') in the space of flows connecting the same UV and IR fixed points defines the (oriented) distance between the fixed points; iii) in even dimensions, the distance between the fixed points is equal to Delta(a)=a_UV-a_IR. In even dimensions, these statements imply the inequalities 0 =< Delta(a)=< Delta(a') and therefore the irreversibility of the RG flow. Another consequence is the inequality a =< c for free scalars and fermions (but not vectors), which can be checked explicitly. Secondly, I elaborate a more general axiomatic set-up where irreversibility is defined as the statement that there exist no pairs of non-trivial flows connecting interchanged UV and IR fixed points. The axioms, based on the notions of length of the flow, oriented distance between the fixed points and certain "oriented-triangle inequalities", imply the irreversibility of the RG flow without a global a function. I conjecture that the RG flow is irreversible also in odd dimensions (without a global a function). In support of this, I check the axioms of irreversibility in a class of d=3 theories where the RG flow is integrable at each order of the large N expansion.Comment: 24 pages, 3 figures; expanded intro, improved presentation, references added - CQ

    Continuum Limit of 2D2D Spin Models with Continuous Symmetry and Conformal Quantum Field Theory

    Get PDF
    According to the standard classification of Conformal Quantum Field Theory (CQFT) in two dimensions, the massless continuum limit of the O(2)O(2) model at the Kosterlitz-Thouless (KT) transition point should be given by the massless free scalar field; in particular the Noether current of the model should be proportional to (the dual of) the gradient of the massless free scalar field, reflecting a symmetry enhanced from O(2)O(2) to O(2)Ă—O(2)O(2)\times O(2). More generally, the massless continuum limit of a spin model with a symmetry given by a Lie group GG should have an enhanced symmetry GĂ—GG\times G. We point out that the arguments leading to this conclusion contain two serious gaps: i) the possibility of `nontrivial local cohomology' and ii) the possibility that the current is an ultralocal field. For the 2D2D O(2)O(2) model we give analytic arguments which rule out the first possibility and use numerical methods to dispose of the second one. We conclude that the standard CQFT predictions appear to be borne out in the O(2)O(2) model, but give an example where they would fail. We also point out that all our arguments apply equally well to any GG symmetric spin model, provided it has a critical point at a finite temperature.Comment: 19 page

    AdS/CFT correspondence in the Euclidean context

    Full text link
    We study two possible prescriptions for AdS/CFT correspondence by means of functional integrals. The considerations are non-perturbative and reveal certain divergencies which turn out to be harmless, in the sense that reflection-positivity and conformal invariance are not destroyed.Comment: 20 pages, references and two remarks adde

    Instantons of M(atrix) Theory in PP-Wave Background

    Get PDF
    M(atrix) theory in PP-wave background possesses a discrete set of classical vacua, all of which preserves 16 supersymmetry and interpretable as collection of giant gravitons. We find Euclidean instanton solutions that interpolate between them, and analyze their properties. Supersymmetry prevents direct mixing between different vacua but still allows effect of instanton to show up in higher order effective interactions, such as analog of v^4 interaction of flat space effective theory. An explicit construction of zero modes is performed, and Goldstone zero modes, bosonic and fermionic, are identified. We further generalize this to massive M(atrix) theory that includes fundamental hypermultiplets, corresponding to insertion of longitudinal fivebranes in the background. After a brief comparison to their counterpart in AdS\times S, we close with a summary.Comment: 25 pages, LaTeX, references added, section 5 update

    Trust and privacy in distributed work groups

    Get PDF
    Proceedings of the 2nd International Workshop on Social Computing, Behavioral Modeling and PredictionTrust plays an important role in both group cooperation and economic exchange. As new technologies emerge for communication and exchange, established mechanisms of trust are disrupted or distorted, which can lead to the breakdown of cooperation or to increasing fraud in exchange. This paper examines whether and how personal privacy information about members of distributed work groups influences individuals' cooperation and privacy behavior in the group. Specifically, we examine whether people use others' privacy settings as signals of trustworthiness that affect group cooperation. In addition, we examine how individual privacy preferences relate to trustworthy behavior. Understanding how people interact with others in online settings, in particular when they have limited information, has important implications for geographically distributed groups enabled through new information technologies. In addition, understanding how people might use information gleaned from technology usage, such as personal privacy settings, particularly in the absence of other information, has implications for understanding many potential situations that arise in pervasively networked environments.Preprin

    First observation of spin-helical Dirac fermions and topological phases in undoped and doped Bi2Te3 demonstrated by spin-ARPES spectroscopy

    Full text link
    Electron systems that possess light-like dispersion relations or the conical Dirac spectrum, such as graphene and bismuth, have recently been shown to harbor unusual collective states in high magnetic fields. Such states are possible because their light-like electrons come in spin pairs that are chiral,which means that their direction of propagation is tied to a quantity called pseudospin that describes their location in the crystal lattice. An emerging direction in quantum materials research is the manipulation of atomic spin-orbit coupling to simulate the effect of a spin dependent magnetic field,in attempt to realize novel spin phases of matter. This effect has been proposed to realize systems consisting of unpaired Dirac cones that are helical, meaning their direction of propagation is tied to the electron spin itself, which are forbidden to exist in graphene or bismuth. The experimental existence of topological order can not be determined without spin-resolved measurements. Here we report a spin-and angle-resolved photoemission study of the hexagonal surface of the Bi2Te3 and Bi{2-x}MnxTe3 series, which is found to exhibit a single helical Dirac cone that is fully spin-polarized. Our observations of a gap in the bulk spin-degenerate band and a spin-resolved surface Dirac node close to the chemical potential show that the low energy dynamics of Bi2Te3 is dominated by the unpaired spin-helical Dirac modes. Our spin-texture measurements prove the existence of a rare topological phase in this materials class for the first time, and suggest its suitability for novel 2D Dirac spin device applications beyond the chiral variety or traditional graphene.Comment: 13 pages, 4 figure
    • …
    corecore