1,662 research outputs found

    Apollo asteroids (1566) Icarus and 2007 MK6: Icarus family members?

    Full text link
    Although it is more complicated to search for near-Earth object (NEO) families than main belt asteroid (MBA) families, since differential orbital evolution within a NEO family can cause current orbital elements to drastically differ from each other, we have found that Apollo asteroids (1566) Icarus and the newly discovered 2007 MK6 are almost certainly related. Specifically, their orbital evolutions show a similar profile, time shifted by only ~1000 yr, based on our time-lag theory. The dynamical relationship between Icarus and 2007 MK6 along with a possible dust band, the Taurid-Perseid meteor swarm, implies the first detection of an asteroidal NEO family, namely the "Icarus asteroid family".Comment: 11 pages, 1 figure, to appear on Astrophysical Journal Letters (journal info added

    Desperate housewives: An analysis of the characterisations of female gamblers portrayed in gambling movies in Hong Kong

    Get PDF
    This article examines portrayals of female gamblers in recent Hong Kong movies. The authors report that the depiction of female gamblers is very different from that of male gamblers in the movies made in the same period. Whereas the male gamblers are pitching a lonely and desperate battle against the evil opponent, the female gamblers portrayed in the movies are housewives or small-time players who gamble only for their personal gain. A general negative overtone in portrayals of female gamblers was interpreted as a reflection of the traditional view that discourages women from gambling. The shift of gambling themes in the Hong Kong movies has been identified to reflect the most salient concerns among Hong Kong residents. Such changes are attributed to particular social and cultural changes in the community

    Finite-Horizon Optimal State Feedback Control of Nonlinear Stochastic Systems Based on a Minimum Principle

    Get PDF
    In this paper, an approach to the finite-horizon optimal state-feedback control problem of nonlinear, stochastic, discrete-time systems is presented. Starting from the dynamic programming equation, the value function will be approximated by means of Taylor series expansion up to second-order derivatives. Moreover, the problem will be reformulated, such that a minimum principle can be applied to the stochastic problem. Employing this minimum principle, the optimal control problem can be rewritten as a two-point boundary-value problem to be solved at each time step of a shrinking horizon. To avoid numerical problems, the two-point boundary-value problem will be solved by means of a continuation method. Thus, the curse of dimensionality of dynamic programming is avoided, and good candidates for the optimal state-feedback controls are obtained. The proposed approach will be evaluated by means of a scalar example system. © 2006 IEEE

    Online-Computation Approach to Optimal Control of Noise-Affected Nonlinear Systems with Continuous State and Control Spaces

    Get PDF
    A novel online-computation approach to optimal control of nonlinear, noise-affected systems with continuous state and control spaces is presented. In the proposed algorithm, system noise is explicitly incorporated into the control decision. This leads to superior results compared to state-of-the-art nonlinear controllers that neglect this influence. The solution of an optimal nonlinear controller for a corresponding deterministic system is employed to find a meaningful state space restriction. This restriction is obtained by means of approximate state prediction using the noisy system equation. Within this constrained state space, an optimal closed-loop solution for a finite decisionmaking horizon (prediction horizon) is determined within an adaptively restricted optimization space. Interleaving stochastic dynamic programming and value function approximation yields a solution to the considered optimal control problem. The enhanced performance of the proposed discrete-time controller is illustrated by means of a scalar example system. Nonlinear model predictive control is applied to address approximate treatment of infinite-horizon problems by the finite-horizon controller

    Detecting Spin-Polarized Currents in Ballistic Nanostructures

    Get PDF
    We demonstrate a mesoscopic spin polarizer/analyzer system that allows the spin polarization of current from a quantum point contact in an in-plane magnetic field to be measured. A transverse focusing geometry is used to couple current from an emitter point contact into a collector point contact. At large in-plane fields, with the point contacts biased to transmit only a single spin (g < e^2/h), the voltage across the collector depends on the spin polarization of the current incident on it. Spin polarizations of greater than 80% are found for both emitter and collector at 300mK and 7T in-plane field.Comment: related papers at http://marcuslab.harvard.ed

    Sign-changing tower of bubbles for a sinh-Poisson equation with asymmetric exponents

    Full text link
    Motivated by the statistical mechanics description of stationary 2D-turbulence, for a sinh-Poisson type equation with asymmetric nonlinearity, we construct a concentrating solution sequence in the form of a tower of singular Liouville bubbles, each of which has a different degeneracy exponent. The asymmetry parameter γ(0,1]\gamma\in(0,1] corresponds to the ratio between the intensity of the negatively rotating vortices and the intensity of the positively rotating vortices. Our solutions correspond to a superposition of highly concentrated vortex configurations of alternating orientation; they extend in a nontrivial way some known results for γ=1\gamma=1. Thus, by analyzing the case γ1\gamma\neq1 we emphasize specific properties of the physically relevant parameter γ\gamma in the vortex concentration phenomena

    Ratio of shear viscosity to entropy density in multifragmentation of Au + Au

    Full text link
    The ratio of the shear viscosity (η\eta) to entropy density (ss) for the intermediate energy heavy-ion collisions has been calculated by using the Green-Kubo method in the framework of the quantum molecular dynamics model. The theoretical curve of η/s\eta/s as a function of the incident energy for the head-on Au+Au collisions displays that a minimum region of η/s\eta/s has been approached at higher incident energies, where the minimum η/s\eta/s value is about 7 times Kovtun-Son- Starinets (KSS) bound (1/4π\pi). We argue that the onset of minimum η/s\eta/s region at higher incident energies corresponds to the nuclear liquid gas phase transition in nuclear multifragmentation.Comment: 6 pages, 8 figure

    Off-diagonal Wave Function Monte Carlo Studies of Hubbard Model I

    Full text link
    We propose a Monte Carlo method, which is a hybrid method of the quantum Monte Carlo method and variational Monte Carlo theory, to study the Hubbard model. The theory is based on the off-diagonal and the Gutzwiller type correlation factors which are taken into account by a Monte Carlo algorithm. In the 4x4 system our method is able to reproduce the exact results obtained by the diagonalization. An application is given to investigate the half-filled band case of two-dimensional square lattice. The energy is favorably compared with quantum Monte Carlo data.Comment: 9 pages, 11 figure

    N=2 Supersymmetric U(1) Gauge Theory in Noncommutative Harmonic Superspace

    Full text link
    We study N=2 supersymmetric U(1) gauge theory in the noncommutative harmonic superspace with nonanticommutative fermionic coordinates. We examine the gauge transformation which preserves the Wess-Zumino gauge by harmonic expansions of component fields. The gauge transformation is shown to depend on the deformation parameters and the anti-holomorphic scalar field. We compute the action explicitly up to the third order in component fields and discuss the field redefinitions so that the component fields transform canonically.Comment: 42 pages, LaTeX, v2: references added, v3: minor correction
    corecore