1,956 research outputs found

    Quantum Creation of the Randall-Sundrum Bubble

    Get PDF
    We investigate the semiclassical instability of the Randall-Sundrum brane world. We carefully analyze the bubble solution with the Randall-Sundrum background, which expresses the decay of the brane world. We evaluate the decay probability following the Euclidean path integral approach to quantum gravity. Since a bubble rapidly expands after the nucleation, the entire spacetime will be occupied by such bubbles.Comment: 13 pages, 6 figures, To appear in Prog. Theor. Phy

    Plus-minus construction leads to perfect invisibility

    Full text link
    Recent theoretical advances applied to metamaterials have opened new avenues to design a coating that hides objects from electromagnetic radiation and even the sight. Here, we propose a new design of cloaking devices that creates perfect invisibility in isotropic media. A combination of positive and negative refractive indices, called plus-minus construction, is essential to achieve perfect invisibility (i.e., no time delay and total absence of reflection). Contrary to the common understanding that between two isotropic materials having different refractive indices the electromagnetic reflection is unavoidable, our method shows that surprisingly the reflection phenomena can be completely eliminated. The invented method, different from the classical impedance matching, may also find electromagnetic applications outside of cloaking devices, wherever distortions are present arising from reflections.Comment: 24 pages, 10 figure

    High-Temperature Transport Properties of Yb4−xSmxSb3

    Get PDF
    Polycrystalline L4Sb3 (L = La, Ce, Sm, and Yb) and Yb4−x Sm x Sb3, which crystallizes in the anti-Th3P4 structure type (I-43d no. 220), were synthesized via high-temperature reaction. Structural and chemical characterization were performed by x-ray diffraction and electronic microscopy with energy-dispersive x-ray analysis. Pucks were densified by spark plasma sintering. Transport property measurements showed that these compounds are n-type with low Seebeck coefficients, except for Yb4Sb3, which shows semimetallic behavior with hole conduction above 523 K. By partially substituting Yb by a trivalent rare earth we successfully improved the thermoelectric figure of merit of Yb4Sb3 up to 0.7 at 1273 K

    Investigation of environmental change pattern in Japan

    Get PDF
    The author has identified the following significant results. A detailed land use classification for a large urban area of Tokyo was made using MSS digital data. It was found that residential, commercial, industrial, and wooded areas and grasslands can be successfully classified. A mesoscale vortex associated with large ocean current, Kuroshio, which is a rare phenomenon, was recognized visually through the analysis of MSS data. It was found that this vortex affects the effluent patterns of rivers. Lava flowing from Sakurajima Volcano was clearly classified for three major erruptions (1779, 1914, and 1946) using MSS data

    Photonic analog of graphene model and its extension -- Dirac cone, symmetry, and edge states --

    Full text link
    This paper presents a theoretical analysis on bulk and edge states in honeycomb lattice photonic crystals with and without time-reversal and/or space-inversion symmetries. Multiple Dirac cones are found in the photonic band structure and the mass gaps are controllable via symmetry breaking. The zigzag and armchair edges of the photonic crystals can support novel edge states that reflect the symmetries of the photonic crystals. The dispersion relation and the field configuration of the edge states are analyzed in detail in comparison to electronic edge states. Leakage of the edge states to free space is inherent in photonic systems and is fully taken into account in the analysis. A topological relation between bulk and edge, which is analogous to that found in quantum Hall systems, is also verified.Comment: 9 pages, 7 figure

    Influence of Magnetic Moment Formation on the Conductance of Coupled Quantum Wires

    Full text link
    In this report, we develop a model for the resonant interaction between a pair of coupled quantum wires, under conditions where self-consistent effects lead to the formation of a local magnetic moment in one of the wires. Our analysis is motivated by the experimental results of Morimoto et al. [Appl. Phys. Lett. \bf{82}, 3952 (2003)], who showed that the conductance of one of the quantum wires exhibits a resonant peak at low temperatures, whenever the other wire is swept into the regime where local-moment formation is expected. In order to account for these observations, we develop a theoretical model for the inter-wire interaction that calculated the transmission properties of one (the fixed) wire when the device potential is modified by the presence of an extra scattering term, arising from the presence of the local moment in the swept wire. To determine the transmission coefficients in this system, we derive equations describing the dynamics of electrons in the swept and fixed wires of the coupled-wire geometry. Our analysis clearly shows that the observation of a resonant peak in the conductance of the fixed wire is correlated to the appearance of additional structure (near 0.750.75\cdot or 0.252e2/h0.25\cdot 2e^2/h) in the conductance of the swept wire, in agreement with the experimental results of Morimoto et al

    EVM and Achievable Data Rate Analysis of Clipped OFDM Signals in Visible Light Communication

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) has been considered for visible light communication (VLC) thanks to its ability to boost data rates as well as its robustness against frequency-selective fading channels. A major disadvantage of OFDM is the large dynamic range of its time-domain waveforms, making OFDM vulnerable to nonlinearity of light emitting diodes (LEDs). DC biased optical OFDM (DCO-OFDM) and asymmetrically clipped optical OFDM (ACO-OFDM) are two popular OFDM techniques developed for the VLC. In this paper, we will analyze the performance of the DCO-OFDM and ACO-OFDM signals in terms of error vector magnitude (EVM), signal-to-distortion ratio (SDR), and achievable data rates under both average optical power and dynamic optical power constraints. EVM is a commonly used metric to characterize distortions. We will describe an approach to numerically calculate the EVM for DCO-OFDM and ACO-OFDM. We will derive the optimum biasing ratio in the sense of minimizing EVM for DCO-OFDM. Additionally, we will formulate the EVM minimization problem as a convex linear optimization problem and obtain an EVM lower bound against which to compare the DCO-OFDM and ACO-OFDM techniques. We will prove that the ACO-OFDM can achieve the lower bound. Average optical power and dynamic optical power are two main constraints in VLC. We will derive the achievable data rates under these two constraints for both additive white Gaussian noise (AWGN) channel and frequency-selective channel. We will compare the performance of DCO-OFDM and ACO-OFDM under different power constraint scenarios

    Overview of Hybrid Ventilation Control System and Full Scale Monitoring

    Get PDF
    Mix-mode or hybrid ventilation systems have been previously shown to reduce cooling and ventilation energy consumption. This paper presents a case study of a new ten story 83,700 ft² (7,780 m²) office building in downtown Tokyo with a hybrid ventilation system that uses only 1.7% of the building footprint for ventilation shafts. The control system design is presented as an example of balancing the comfort expectations of multiple tenants in a mix-mode system. On-site measurements are presented from a three week commissioning project to show: modest temperature differences within the occupied zone with a maximum difference of 1.5 °F (0.83 °C), large differences of up to 6.1 °F (3.4 °C) between the measured outdoor temperature in the control system and the actual inlet temperature for the natural ventilation system, the importance of smooth integration of various design teams, and the use of low-power fans, 1.2-0.60 hp (900-450 W), that leverage the low pressure drop through the building when natural driving forces are insufficient for pure natural ventilation. Practical lessons learned from the design and commissioning of the building are also shared.Hulic Co., Ltd

    Duality Relation among Periodic Potential Problems in the Lowest Landau Level

    Full text link
    Using a momentum representation of a magnetic von Neumann lattice, we study a two-dimensional electron in a uniform magnetic field and obtain one-particle spectra of various periodic short-range potential problems in the lowest Landau level.We find that the energy spectra satisfy a duality relation between a period of the potential and a magnetic length. The energy spectra consist of the Hofstadter-type bands and flat bands. We also study the connection between a periodic short-range potential problem and a tight-binding model.Comment: 6 pages, 3 figures, final version to appear in PR
    corecore