1,150 research outputs found

    Color-flavor locked strange matter

    Full text link
    We analyze how the CFL states in dense matter work in the direction of enhancing the parameter space for absolutely stable phases (strange matter). We find that the "CFL strange matter" phase can be the true ground state of hadronic matter for a much wider range of the parameters of the model (the gap of the QCD Cooper pairs Δ\Delta, the strange quark mass msm_s and the Bag Constant BB) than the state without any pairing, and derive a full equation of state and an accurate analytic approximation to the lowest order in Δ\Delta and msm_{s} which may be directly used for applications. The effects of pairing on the equation of state are found to be small (as previously expected) but not negligible and may be relevant for astrophysics.Comment: 5 pages, 2 figure

    Latent heat in the chiral phase transition

    Get PDF
    The chiral phase transition at finite temperature and density is discussed in the framework of the QCD-like gauge field theory. The thermodynamical potential is investigated using a variational approach. Latent heat generated in the first-order phase transition is calculated. It is found that the latent heat is enhanced near the tricritical point and is more than several hundred MeV per quark.Comment: 6 pages, 3 figure

    Vortices on Higher Genus Surfaces

    Full text link
    We consider the topological interactions of vortices on general surfaces. If the genus of the surface is greater than zero, the handles can carry magnetic flux. The classical state of the vortices and the handles can be described by a mapping from the fundamental group to the unbroken gauge group. The allowed configurations must satisfy a relation induced by the fundamental group. Upon quantization, the handles can carry ``Cheshire charge.'' The motion of the vortices can be described by the braid group of the surface. How the motion of the vortices affects the state is analyzed in detail.Comment: 28 pages with 10 figures; uses phyzzx and psfig; Caltech preprint CALT-68-187

    BCS vs Overhauser pairing in dense (2+1)d QCD

    Get PDF
    We compare the BCS and Overhauser effect as competing mechanisms for the destabilization of the quark Fermi surface at asymptotically large chemical potential, for the special case of 2 space and 1 time dimension. We use the framework of perturbative one-gluon exchange, which dominates the pairing at ÎŒ/g2≫1\mu/g^2\gg 1. With screening in matter, we show that in the weak coupling limit the Overhauser effect can compete with the BCS effect only for a sufficiently large number of colors. Both the BCS and the Overhauser gaps are of order g4/ÎŒg^{4}/\mu in Landau gauge.Comment: 10 pages, no figur

    Color superconductivity in weak coupling

    Full text link
    We derive perturbatively the gap equations for a color-superconducting condensate with total spin J=0 in dense QCD. At zero temperature, we confirm the results of Son for the dependence of the condensate on the coupling constant, and compute the prefactor to leading logarithmic accuracy. At nonzero temperature, we find that to leading order in weak coupling, the temperature dependence of the condensate is identical to that in BCS-like theories. The condensates for total spin J=1 are classified; to leading logarithmic accuracy these condensates are of the same order as those of spin J=0.Comment: 30 pages, 3 figures, RevTeX, epsf and psfig style files require

    Non-Abelian discrete gauge symmetries in 4d string models

    Full text link
    We study the realization of non-Abelian discrete gauge symmetries in 4d field theory and string theory compactifications. The underlying structure generalizes the Abelian case, and follows from the interplay between gaugings of non-Abelian isometries of the scalar manifold and field identifications making axion-like fields periodic. We present several classes of string constructions realizing non-Abelian discrete gauge symmetries. In particular, compactifications with torsion homology classes, where non-Abelianity arises microscopically from the Hanany-Witten effect, or compactifications with non-Abelian discrete isometry groups, like twisted tori. We finally focus on the more interesting case of magnetized branes in toroidal compactifications and quotients thereof (and their heterotic and intersecting duals), in which the non-Abelian discrete gauge symmetries imply powerful selection rules for Yukawa couplings of charged matter fields. In particular, in MSSM-like models they correspond to discrete flavour symmetries constraining the quark and lepton mass matrices, as we show in specific examples.Comment: 58 pages; minor typos corrected and references adde

    Metastability in Two Dimensions and the Effective Potential

    Full text link
    We study analytically and numerically the decay of a metastable phase in (2+1)-dimensional classical scalar field theory coupled to a heat bath, which is equivalent to two-dimensional Euclidean quantum field theory at zero temperature. By a numerical simulation we obtain the nucleation barrier as a function of the parameters of the potential, and compare it to the theoretical prediction from the bounce (critical bubble) calculation. We find the nucleation barrier to be accurately predicted by theory using the bounce configuration obtained from the tree-level (``classical'') effective action. Within the range of parameters probed, we found that using the bounce derived from the one-loop effective action requires an unnaturally large prefactor to match the lattice results. Deviations from the tree-level prediction are seen in the regime where loop corrections would be expected to become important.Comment: 13pp, LaTex with Postscript figs, CLNS 93/1202, DART-HEP-93/0

    Infrared Behavior of the Gluon Propagator on a Large Volume Lattice

    Get PDF
    The first calculation of the gluon propagator using an order a^2 improved action with the corresponding order a^2 improved Landau gauge fixing condition is presented. The gluon propagator obtained from the improved action and improved Landau gauge condition is compared with earlier unimproved results on similar physical lattice volumes of 3.2^3 \times 6.4 fm^4. We find agreement between the improved propagator calculated on a coarse lattice with lattice spacing a = 0.35 fm and the unimproved propagator calculated on a fine lattice with spacing a = 0.10 fm. This motivates us to calculate the gluon propagator on a coarse large-volume lattice 5.6^3 \times 11.2 fm^4. The infrared behavior of previous studies is confirmed in this work. The gluon propagator is enhanced at intermediate momenta and suppressed at infrared momenta. Therefore the observed infrared suppression of the Landau gauge gluon propagator is not a finite volume effect.Comment: 8 pages, 4 figures, minor typos corrected and repsonse to referees comment

    String Breaking in Four Dimensional Lattice QCD

    Get PDF
    Virtual quark pair screening leads to breaking of the string between fundamental representation quarks in QCD. For unquenched four dimensional lattice QCD, this (so far elusive) phenomenon is studied using the recently developed truncated determinant algorithm (TDA). The dynamical configurations were generated on an Athlon 650 MHz PC. Quark eigenmodes up to 420 MeV are included exactly in these TDA studies performed at low quark mass on large coarse (but O(a2a^2) improved) lattices. A study of Wilson line correlators in Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical configurations reveals evidence for flattening of the string tension at distances R ≄\geq approximately 1 fm.Comment: 16 pages, 5 figures, Latex (deleted extraneous eps figure file

    Microphysical Approach to Nonequilibrium Dynamics of Quantum Fields

    Get PDF
    We examine the nonequilibrium dynamics of a self-interacting λϕ4\lambda\phi^4 scalar field theory. Using a real time formulation of finite temperature field theory we derive, up to two loops and O(λ2)O(\lambda^2), the effective equation of motion describing the approach to equilibrium. We present a detailed analysis of the approximations used in order to obtain a Langevin-like equation of motion, in which the noise and dissipation terms associated with quantum fluctuations obey a fluctuation-dissipation relation. We show that, in general, the noise is colored (time-dependent) and multiplicative (couples nonlinearly to the field), even though it is still Gaussian distributed. The noise becomes white in the infinite temperature limit. We also address the effect of couplings to other fields, which we assume play the r\^ole of the thermal bath, in the effective equation of motion for ϕ\phi. In particular, we obtain the fluctuation and noise terms due to a quadratic coupling to another scalar field.Comment: 30 pages, LaTex (uses RevTex 3.0), DART-HEP-93/0
    • 

    corecore