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Latent heat in the chiral phase transition
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The chiral phase transition at finite temperature and density is discussed in the framework of the QCD-like
gauge field theory. The thermodynamical potential is investigated using a variational approach. Latent heat
generated in the first-order phase transition is calculated. It is found that the latent heat is enhanced near the
tricritical point and is more than several hundred MeV per quark.
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[. INTRODUCTION supposed to be given off at the phase transition between the
two phases. This process is due to the acceleration of par-
A many-particle system in general possesses two or morticles by the generated latent heat. Therefore, knowledge
different forms of existence called phases. Conversions beabout the latent heat is an important prerequisite for analysis
tween these phases are called phase transitions. There &fthe data in such a high energy collision experiment that is
mainly two kinds of phase transitions. One is the first-ordeexpected to generate QGP’s.
phase transition; the other is the second-order one. In the The outline of the paper is as follows. In the next section,
first-order phase transition, as in the conversion from vapoe derive the partition function of the quark matter based on
to liquid, the entropy of the system changes discontinuouslyhe QCD-like gauge field theory in the Landau gauge. In Sec.
and a certain amount of heat may be generated as a resull, we perform a mean field approximation and derive the
This kind of heat has been called latent heat. On the othepchwinger-Dyson equation for the effective mass. Tt&erc.
hand, in the second-order phase transition, the entroplV/) using a variational procedure, we solve numerically the
changes continuously and the latent heat is not given off. Schwinger-Dyson equation with a trial mass function and
The behavior of the phase transition in quark matter is oﬂetermine the critical point. In Sec. V, we compute the latent
fundamental interesfl1]. It is believed that at sufficiently heat numerically. Section VI is devoted to summary and dis-
high temperature and/or density the system lies in th&USSIONS.
chirally symmetric phase. The quark-gluon plasf@&P is
one of the most important possibilities in this phase. Re- Il. PARTITION EUNCTION
cently there has been great interest in generating QGP’s in ) _ - )
experiments. It is expected that QGP’s may be realized in We derive here the effective partition function of the
high energy heavy-ion collisions at the CERN Large Hadror@uark matter in the framework of the QCD-like gauge field
Collider and at the BNL Relativistic Heavy lon Collider. theory. In this paper, we takd.=3 as the number of color
When the temperature of QGP's falls and reaches the critic@"dN¢=3 as that of flavor. Let us start with the exact QCD
cally broken and we have a phase transition from the chirally

symmetric phase into the chiral symmetry broken phase. Z(T,u)=Tre £

The chiral phase transition at finite temperature and/or L B
finite density has been studied by many auth@rs10]. Ac- :Nf DYDWVDA ex;{f de d3x£QCD , (D)
cording to them, it was shown that the transition is of the 0

second order at low density and of the first order at high

density. The critical density between them is called a tricriti-where3=T"1, 7=it, and’ stands for the Hamiltonian of
cal point[11-13. This nature of the phase transition was the system. When the chiral symmetry is exact, the QCD
shown by the Nambu—Jona-LasinidlJL) model [2] and ~ Lagrangianlqcp is given by

then confirmed also by the QCD-like thedr§—10]. If the

phase transition is of the first order, a latent heat must be Locp=Lqt+ Lt (2
generated across the critical temperature as mentioned above.

Our main goal here is to evaluate the latent heat in the chiravhere Lagrangians of the quarks and gluons are given by
phase transition at finite temperature and at finite chemical
potential with the use of the QCD-like theory.

So far much efforts have been made to study about the
signals of generation of QGP[dl4]. The generated latent
heat may give a signal of the QGP. For example, the shock 1 1
wave can be expected to be produced by the generated latent Li=— —FWFW——(aMAM)Z
heat and may be available as a signal. The shock wave is 4 2a

a

- — A
L=V (i 740, + uy") W —gW y* S VAL, 3)

= —A#aD 1Aa4 nonlinear terms, 4
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respectively. Here:, g, A2, anda denote chemical potential, Using the Fourier transformation, the modified gluon propa-
the coupling constant, color $8) matrices, and gauge pa- gatorDg(x—Yy) is expressed as
rameter, respectively. The functionD;V1=gW¢9’7a,7—(1
—a 14,0, is the inverse tree-level gluon propagator. P d*p 1
1 — 1

Next, we neglect the nonlinear terms and the coupling De(x—y)=8 Z f (2m)3 __pz
constant is replaced by the running coupling one, which is
called the QC[_)—Iike theorﬂl?—ZJ]_. Ther_1 we can int(_agrate wherep=(iw,,p), x=(—i7,x), andX/ denotes the boson
out the gluon fieldA. Moreover to investigate the antiquark- \1atsubara frequency sum over,=2n78"! with an inte-

quark pairing correlation, we make use of thg Fierz rear-ger n. In the same way, the auxiliary field is expanded as
rangement taLqocp. If the most attractive term is left, the

Lagrangian is expressed by

e—ip(X—y), (10)

d3p

(ZW)3¢(p)ef‘p(y*X’, (12)

p(x=y) =B f

o 12
Loco= P0G )W (X)+ -
where X, denotes the fermion Matsubara frequency sum

_ over w,=2(n+1)wB "1 with an integern. Then we can
Xf d*y{¥ (X)W (y)}De(x~Y) rewrite the pairing field as
X[ ()WL, ©) sxy=S [ P (e 12
noJo(2m)®

whereg’?=(3+ «)g?/27 and the inverse quark propagator
G} (x)=(iy*d,+umy°) is introduced. We hereafter fix the where the Fourier component on the right hand side is de-
gauge parameter as=0 (Landau gauge which is the usual fined by
choice in the QCD-like theory.

Let us now introduce an auxiliary bilocal scalar field
¢(X,y) representing a wave function of an antiquark-quark A(D)Eﬁ_12 J
pair. In order to use the Stratonovich-Haverd transformation, "
we take the following identity:

d3q 912

—e(@. (13
(2m)°® = (p—q)®
Using A(p), we can transform the partition function. Af-

o — ter integrating out the quark fieldg andW¥, we obtain
1=CJ De*Dgex —J d*xd*y{e(x,y) =V (x)¥(y)}

Z=N’f D¢* D¢ exf — Sel, (14

X9 2De(x—y){e* (X.y)— ¥ (y)¥(x)}|, 6)

where the effective actioB is given as
whereC is a normalization constant. Substituting this iden-
tity into Eq. (1), the partition function can be rewritten as d3p 5 —
loglA*(p) —p”]

Sef= — 2gv; f

— (2m)®
z=N'f DYDVDe*Dgexd—S'], (7) L o
+35V2 J s PPN, (15

where the corresponding action is given by

g'2 wherep=(iw,+ &,p) and é=N . XN;=3X3=9. Thus our
S =f d*xd*y - (p(x,y)‘zD,:(x—y) effective action is represented by omlyp). It is interpreted
as an effective mass for the quark so that we call it the
— g'? effective mass function. The effective action obtained above
—‘I’(X)[ S(x=y)GH(y)+ 7¢*(va)DF(X_y) will play a fundamental role in the next section.

12

g 11l. MEAN FIELD APPROXIMATION
+ TDF(y_X)‘P(YvX)]\P(y)

. (8

In this section, we will approximate the partition function
Here we assume that the auxiliary field is dependent Onlobtained above. To this end, we make use of the stationary
) . - . XWentzeI-Kramers-BriIIouin(WKB)] approximation for the
on the relative coordlnateso(x,y)—cp(xjy). Th|s. means path integra[15,16]. If the extremum of the integral is real-
that the center of mass of the quark-antiquark pair is statlonlrzed by, it must satisfy the following stationary condition:
ary, because we concentrate on the ground state of the sys- ' ’

tem. Let us define the pairing fiell(x—y): P

=0. (16)
A(X—y)=0"2De(x~y) @(¥,). ©) o0(P) |, 0
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¢(® is a mean auxiliary field and has physical meaning thathe asymptotic freedom in the deep Euclidean region is sat-

¢©=(W(x)¥(y)). The superscript O is omitted hereafter. isfied by this running coupling.

The stationary condition is transformed into the following I'ns.tead of solving the SD equat|on. exqctly, we take a
equation: variational procedure according to RET]: we introduce the

following trial mass functionf A(p)] obtained through the

P A(q) study of T=u=0 case,

(2m)% —(p—q)? A%(q)—q?’

A(p)=3C,8" 12 f
g
(17) A<p>=?[log<— P2+ pA)ASepl¥2 L, (2D)

where C2—(N2 1)/(2N;)=4/3 is the quadratic Casimir

operator for the color S(3) group. This is nothing but the whereo is an order parameter of the chiral symmetry. Then
Schwinger-Dyson equation for an effective quark magg) ~ the SD equation with the running coupling leads to

in the ladder approximation, which is the same equation as N

that obtained by the previous auth¢@. Of course we may AQ)=3C,B 1S J d°p  g%(a,p)  A(p)

take a variation ofA(p) instead of¢(p). The stationary q 2P (2m)% —(q—p)% A%(p)—p?

condition with respect ta\(p) leads to (22)
A(p) Since — (q—p)? in the denominator is a gluon momentum,
¢(p)= Az(p)_az' (18) the most natural form of the running coupling would be

9°(— (g—p)?). However, the momentum dependence would
Substituting this equation into Eq13), we get the same bring about many difficulties from its angle dependence in
Schwinger-Dyson equation. actual numerical calculations. Assuming that the effect of the

If the effective quark mass function is replaced by theangle dependent part2qpcosé in —(q— p)? is negligible
mean value, we can obtain the partition function at onceon average, we approximate the running couplibg:
Moreover from the partition function, the thermodynamical

potentialQ) is given by g2(q,p)=g%(— (g2+p?)). (23
T )=~ (0) Since we use the variational procedure with respect-to
Q '“)_ instead of the self-consistent iteration method, it is sufficient
to consider the equation with the lowest value e
3 —q%=m?T?. Thus the SD equation we ought to solve is
21y [
n (2m)*

————[log{( 72T+ p2)/ A]cp}] 5
A%(p) w2T2+ pj D

g[ ] 2( ) 2

1
log[ (72T?+ w3+ p?+ pa)/ Adcpl

The thermodynamical potenti&l(T,u) will be a key func-
tion in later discussions on the chiral phase transition and the

1 A
latent heat. y (p)_ . (24)
(wn—7T)?+p® A%(p)—p?

IV. PHASE DIAGRAM
Since the left hand side is independentogfit is rather easy
to seek the values af satisfying this equation.
The parameters of our model arey,cp=738 MeV and
Iog(pR/A2 cp) =0.1. These values are the same as those
used in Ref. [7] where the trial mass function is also the
me as ours.

The above equation has three types of solutions in accor-
dance with the values of the temperatiirand the chemical
potential u: (1) o=0; (2) 0=0,04 (0<0y); B) o
’ (20) =_0,_oo,al (0<0y<oy). In the qase(l), a=0_ is always a
logl (= p?+PR)/ Adcol minimum and the thermodynamical potent@lis monotoni-

cally increasing withr. In the casd2), c=0 is a maximum
wherea=6C,/(11—2N;/3)=8/9 and the parameterg is and o; a minimum so that) is decreasing ¢<o,) and
introduced in order to regulate the infrared divergence. Heréncreasing ¢>o4). In the last caseg=0 and o, are
we have assumed that the running coupling is independent @finima andoj is a maximumi} is increasing <o, and
chemical potential as done in RET). It should be noted that o> 0¢;) and decreasingf,<o<o;). Moreover the cases)

We are now in a position to solve the Schwinger-Dyson
(SD) equation numerically and determine the phase diagram
of the quark matter. Let us now adopt the modified runnlngt
coupling of the one-loop ordergﬁ [19]. It is obtained
through the study using the operator product expansion a
renormalization-group equation in QCD. The explicit expres-
sion is given by

27a

92— g%(p) =
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FIG. 2. Temperature dependencef) at u=350 MeV. This
FIG. 1. The schematic view of the phase diagram onThe is a case of the first-order phase transition. The curve passes
plane based on our numerical results. The p&imtenotes the tri-  through the horizontal line at the critical poilt and the slope of

critical one. the tangential line gives the latent heat by E2D).
is discriminated between the case @{0)>Q (o) (37) 90 90
and that of2(0)<Q (o) [(37)]. ST P T o (26)

Now we consider the behavior of the thermodynamical

potential when the temperature increagi® chemical po- | et us now introduce the difference between the thermody-

@ (2)—(1) or (3)—=(1) (r<ump); (0 (37)—=(3")  the symmetry one,

—(1) (mp<m<mo); () (3")—(1) or (1) (uo<p). Inthe

pattern(a), the order parameter changes fromr; to O at AQ(Te, ) =0T, p,00)— QT 1,0). (27)

T=T, continuously so that the transition is of the second

order. On the other hand ifb), o changes fromr; to 0 at  gimilarly, we define the difference between the entropy den-

T=T, discontinuously. This abrupt jump occurs under thesjty in the broken phase and that in the symmetry one:

condition Q(T¢,u,01)=Q(T¢,p,0). This equation deter- AS(T,,u)=S(T.,u,01) — T¢,1,0).

mines the critical temperatuii, and this transition is of the We can calculatd S(T.,x) from the partial derivative of

first order. The last pattern does not give any phase transi () with respect to the temperatufe

tions and corresponds to the supercooling. e in the

above equations is a critical point between such two transi- IA

tions and the pointgp,Tp) is called a tricritical point. AS(Te,pu)=— (7) (Te, ). (28
Numerical results are shown in Fig. 1, which is a phase ©

diagram for the quark mattdr22,23. The closed circles ] ] ]

mean the second-order phase transition and the open ones tHgW the latent heat can be derived from this entropy differ-

first-order one. The pointP” stands for the tricritical point. €Nce as follows:

We have a second-order phase transitionT at 200 MeV

with =0 and a first-order phase transition at. Q= —TAS(Te,u). (29
=400 MeV withT=0. The position of the tricritical poir® .
is at (Tp,up)=(105 MeV, 300 MeV. These numerical re- For example, we have drawkQ(T,u) as a function of

sults are consistent with those by the previous authors.  the temperature wit.=0.35 GeV in Fig. 2. Then we can
evaluate the latent heat from the slope of the curve at the

critical pointAQ(T.,x)=0. The result of the latent heat per
V. LATENT HEAT particle thus obtained is shown in Fig. 3 as a function of the
hemical potentiale. It tells us that the latent heat is not
ﬁiven off in the second-order phase transitiop<{up
=0.30 GeV). The latent heat emerges abruptly with large
value (~250 MeV) near the tricritical point gp
=0.30 GeV). When the chemical potential is increased, it
decreases and vanisheswat 0.40 GeV. In order to realize

In this section, we will calculate the latent heat generat
across the first-order phase transition. For this purpose,
need to know the entropy densi8/and the particle number
densityp first. We note the following relation:

dQ=-SdT—pdu. (25 this behavior, let us consider the following relation:
Accordingly, we can calculat§ and p from the thermody- Q|=Tcw, (30)
namical potential as follows: aTe

014014-4
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03 theory as an effective theory and have performed the numeri-
cal calculations using the mean figd/KB) approximation.

We have calculated the latent heat generated in the first-order
phase transition. The latent heat is enhanced near the tricriti-
cal point and decreases as the chemical potential increases.
However, it should be pointed out that more accurate nu-
merical simulations will be necessary for the detailed behav-
ior of the latent heat near the tricritical point.

We must now note the existence of the color supercon-
ducting state which has been disregarded in our numerical
calculations[24—-26. The color superconducting state is

0 : considered to be able to exist in the region at low tempera-

0 01 02 03 04 05 ture and high density apart from the tricritical point. Hence,
U (GeV) we cannot apply our results directly on the actual physical
phenomenon, in which color superconductivity is involved.
FIG. 3. The latent hed, as a function of the chemical potential However, the phase transition on the color superconductivity

QL (GCV)

»
»—

ek is of the second-order so that it does not give off the latent
. . o heat originated on this transitid27,28.
which is derived from Eqs(28) and (29). Wheny is in- Itis pointed out that the values @fandu realized in high

creased in the region of the first-order transition, the figure OEnergy heavy-ion collisions may be close to the tricritical
AQ(T) becomes shallow as a functionDfsee Fig. 2 This  ,4int[11-13. Therefore, it may be possible to observe some
means that the derivativeA()(T.)/JT. decreases with in-  gignas originated in the generation of the latent heat because
creasingu. Therefore the latent heat decreases with increasyf the fact that the latent heat becomes large near the tricriti-
ing w. Our numerical result shows that the latent heat has g point.

singularity near the tricritical point and plays an important

role to identify the tricritical point. ACKNOWLEDGMENTS
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