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Latent heat in the chiral phase transition
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The chiral phase transition at finite temperature and density is discussed in the framework of the QCD-like
gauge field theory. The thermodynamical potential is investigated using a variational approach. Latent heat
generated in the first-order phase transition is calculated. It is found that the latent heat is enhanced near the
tricritical point and is more than several hundred MeV per quark.
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I. INTRODUCTION

A many-particle system in general possesses two or m
different forms of existence called phases. Conversions
tween these phases are called phase transitions. Ther
mainly two kinds of phase transitions. One is the first-ord
phase transition; the other is the second-order one. In
first-order phase transition, as in the conversion from va
to liquid, the entropy of the system changes discontinuou
and a certain amount of heat may be generated as a re
This kind of heat has been called latent heat. On the o
hand, in the second-order phase transition, the entr
changes continuously and the latent heat is not given of

The behavior of the phase transition in quark matter is
fundamental interest@1#. It is believed that at sufficiently
high temperature and/or density the system lies in
chirally symmetric phase. The quark-gluon plasma~QGP! is
one of the most important possibilities in this phase. R
cently there has been great interest in generating QGP
experiments. It is expected that QGP’s may be realized
high energy heavy-ion collisions at the CERN Large Had
Collider and at the BNL Relativistic Heavy Ion Collide
When the temperature of QGP’s falls and reaches the cri
temperature (Tc), the chiral symmetry in QCD is dynami
cally broken and we have a phase transition from the chir
symmetric phase into the chiral symmetry broken phase

The chiral phase transition at finite temperature and
finite density has been studied by many authors@2–10#. Ac-
cording to them, it was shown that the transition is of t
second order at low density and of the first order at h
density. The critical density between them is called a tricr
cal point @11–13#. This nature of the phase transition w
shown by the Nambu–Jona-Lasinio~NJL! model @2# and
then confirmed also by the QCD-like theory@3–10#. If the
phase transition is of the first order, a latent heat must
generated across the critical temperature as mentioned ab
Our main goal here is to evaluate the latent heat in the ch
phase transition at finite temperature and at finite chem
potential with the use of the QCD-like theory.

So far much efforts have been made to study about
signals of generation of QGP’s@14#. The generated laten
heat may give a signal of the QGP. For example, the sh
wave can be expected to be produced by the generated l
heat and may be available as a signal. The shock wav
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supposed to be given off at the phase transition between
two phases. This process is due to the acceleration of
ticles by the generated latent heat. Therefore, knowle
about the latent heat is an important prerequisite for anal
of the data in such a high energy collision experiment tha
expected to generate QGP’s.

The outline of the paper is as follows. In the next sectio
we derive the partition function of the quark matter based
the QCD-like gauge field theory in the Landau gauge. In S
III, we perform a mean field approximation and derive t
Schwinger-Dyson equation for the effective mass. Then~Sec.
IV ! using a variational procedure, we solve numerically t
Schwinger-Dyson equation with a trial mass function a
determine the critical point. In Sec. V, we compute the lat
heat numerically. Section VI is devoted to summary and d
cussions.

II. PARTITION FUNCTION

We derive here the effective partition function of th
quark matter in the framework of the QCD-like gauge fie
theory. In this paper, we takeNc53 as the number of colo
andNf53 as that of flavor. Let us start with the exact QC
partition function in the path-integral formalism@15,16#:

Z~T,m!5Tr e2bH

5NE DC̄DCDA expF E
0

b

dtE d3xLQCDG , ~1!

whereb5T21, t5 i t , andH stands for the Hamiltonian o
the system. When the chiral symmetry is exact, the Q
LagrangianLQCD is given by

LQCD5Lq1Lf , ~2!

where Lagrangians of the quarks and gluons are given b

Lq[C̄~ igm]m1mg0!C2gC̄gm
la

2
CAm

a , ~3!

Lf[2
1

4
FmnFmn2

1

2a
~]mAm!2

5
1

2
AmaDmn

21Ana1nonlinear terms, ~4!
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respectively. Herem, g, la, anda denote chemical potentia
the coupling constant, color SU~3! matrices, and gauge pa
rameter, respectively. The functionDmn

215gmn]h]h2(1
2a21)]m]n is the inverse tree-level gluon propagator.

Next, we neglect the nonlinear terms and the coupl
constant is replaced by the running coupling one, which
called the QCD-like theory@17–21#. Then we can integrate
out the gluon fieldA. Moreover to investigate the antiquark
quark pairing correlation, we make use of the Fierz re
rangement toLQCD. If the most attractive term is left, th
Lagrangian is expressed by

LQCD5C̄~x!G21~x!C~x!1
g82

2

3E d4y$C̄~x!C~y!%DF~x2y!

3$C̄~y!C~x!%, ~5!

whereg82[(31a)g2/27 and the inverse quark propagat
G21(x)5( igm]m1mg0) is introduced. We hereafter fix th
gauge parameter asa50 ~Landau gauge!, which is the usual
choice in the QCD-like theory.

Let us now introduce an auxiliary bilocal scalar fie
w(x,y) representing a wave function of an antiquark-qua
pair. In order to use the Stratonovich-Haverd transformat
we take the following identity:

15CE Dw* Dw expF2E d4xd4y$w~x,y!2C̄~x!C~y!%

3g82DF~x2y!$w* ~x,y!2C̄~y!C~x!%G , ~6!

whereC is a normalization constant. Substituting this ide
tity into Eq. ~1!, the partition function can be rewritten as

Z5N8E DC̄DCDw* Dw exp@2S8#, ~7!

where the corresponding action is given by

S85E d4xd4yFg82

2 Uw~x,y!U2DF~x2y!

2C̄~x!H d~x2y!G21~y!1
g82

2
w* ~x,y!DF~x2y!

1
g82

2
DF~y2x!w~y,x!J C~y!G . ~8!

Here we assume that the auxiliary field is dependent o
on the relative coordinates:w(x,y)5w(x2y). This means
that the center of mass of the quark-antiquark pair is stat
ary, because we concentrate on the ground state of the
tem. Let us define the pairing fieldD(x2y):

D~x2y![g82DF~x2y!w~y,x!. ~9!
01401
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Using the Fourier transformation, the modified gluon prop
gatorDF(x2y) is expressed as

DF~x2y![b21( 8
n

E d3p

~2p!3

1

2p2
e2 ip(x2y), ~10!

wherep[( ivn ,p), x[(2 i t,x), and(n8 denotes the boson
Matsubara frequency sum overvn52npb21 with an inte-
ger n. In the same way, the auxiliary field is expanded as

w~x2y!5b21(
n
E d3p

~2p!3
w~p!e2 ip(y2x), ~11!

where (n denotes the fermion Matsubara frequency s
over vn52(n11)pb21 with an integern. Then we can
rewrite the pairing field as

D~x2y!5b21(
n
E d3p

~2p!3
D~p!e2 ip(y2x), ~12!

where the Fourier component on the right hand side is
fined by

D~p![b21(
n
E d3q

~2p!3

g82

2~p2q!2
w~q!. ~13!

Using D(p), we can transform the partition function. Af

ter integrating out the quark fieldsC̄ andC, we obtain

Z5N8E Dw* Dw exp@2Seff#, ~14!

where the effective actionSeff is given as

Seff522jV(
n
E d3p

~2p!3
log@D2~p!2 p̄2#

1
1

2
V(

n
E d3p

~2p!3
w~p!D~p!, ~15!

wherep̄[( ivn1m,p) andj[Nc3Nf533359. Thus our
effective action is represented by onlyD(p). It is interpreted
as an effective mass for the quark so that we call it
effective mass function. The effective action obtained abo
will play a fundamental role in the next section.

III. MEAN FIELD APPROXIMATION

In this section, we will approximate the partition functio
obtained above. To this end, we make use of the station
@Wentzel-Kramers-Brillouin~WKB!# approximation for the
path integral@15,16#. If the extremum of the integral is real
ized byw0, it must satisfy the following stationary condition

dSeff

dw~p!
U

w5w(0)

50. ~16!
4-2
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w (0) is a mean auxiliary field and has physical meaning t

w (0)5^C̄(x)C(y)&. The superscript 0 is omitted hereafte
The stationary condition is transformed into the followin
equation:

D~p!53C2b21(
n
E d3q

~2p!3

g2

2~p2q!2

D~q!

D2~q!2q̄2
,

~17!

where C25(Nc
221)/(2Nc)54/3 is the quadratic Casimi

operator for the color SU~3! group. This is nothing but the
Schwinger-Dyson equation for an effective quark massD(p)
in the ladder approximation, which is the same equation
that obtained by the previous authors@7#. Of course we may
take a variation ofD(p) instead ofw(p). The stationary
condition with respect toD(p) leads to

w~p!54j
D~p!

D2~p!2 p̄2
. ~18!

Substituting this equation into Eq.~13!, we get the same
Schwinger-Dyson equation.

If the effective quark mass function is replaced by t
mean value, we can obtain the partition function at on
Moreover from the partition function, the thermodynamic
potentialV is given by

V~T,m![
T

V
Seff

(0)

52jT(
n
E d3p

~2p!3

3F2 log@D2~p!2 p̄2#1
D2~p!

D2~p!2 p̄2G . ~19!

The thermodynamical potentialV(T,m) will be a key func-
tion in later discussions on the chiral phase transition and
latent heat.

IV. PHASE DIAGRAM

We are now in a position to solve the Schwinger-Dys
~SD! equation numerically and determine the phase diag
of the quark matter. Let us now adopt the modified runn
coupling of the one-loop order (ḡ) @19#. It is obtained
through the study using the operator product expansion
renormalization-group equation in QCD. The explicit expre
sion is given by

g2→ḡ2~p!5
2p2a

log@~2p21pR
2 !/LQCD

2 #
, ~20!

where a56C2 /(1122Nf /3)58/9 and the parameterpR is
introduced in order to regulate the infrared divergence. H
we have assumed that the running coupling is independe
chemical potential as done in Ref.@7#. It should be noted tha
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the asymptotic freedom in the deep Euclidean region is
isfied by this running coupling.

Instead of solving the SD equation exactly, we take
variational procedure according to Ref.@7#: we introduce the
following trial mass function@D(p)# obtained through the
study ofT5m50 case,

D~p!5
s

2p21pR
2 @ log~2p21pR

2 !/LQCD
2 #a/221, ~21!

wheres is an order parameter of the chiral symmetry. Th
the SD equation with the running coupling leads to

D~q!53C2b21(
n
E d3p

~2p!3

ḡ2~q,p!

2~q2p!2

D~p!

D2~p!2 p̄2
.

~22!

Since2(q2p)2 in the denominator is a gluon momentum
the most natural form of the running coupling would b
ḡ2
„2(q2p)2

…. However, the momentum dependence wou
bring about many difficulties from its angle dependence
actual numerical calculations. Assuming that the effect of
angle dependent part22qp cosu in 2(q2p)2 is negligible
on average, we approximate the running coupling@19#:

ḡ2~q,p!.ḡ2
„2~q21p2!…. ~23!

Since we use the variational procedure with respect tos
instead of the self-consistent iteration method, it is suffici
to consider the equation with the lowest value of2q2:
2q25p2T2. Thus the SD equation we ought to solve is

1

p2T21pR
2 @ log$~p2T21pR

2 !/LQCD
2 %#25/9

5
32T

9s (
n
E dupup2

1

log@~p2T21vn
21p21pR

2 !/LQCD
2 #

3
1

~vn2pT!21p2

D~p!

D2~p!2 p̄2
. ~24!

Since the left hand side is independent ofs, it is rather easy
to seek the values ofs satisfying this equation.

The parameters of our model areLQCD5738 MeV and
tR[ log(pR

2/LQCD
2 )50.1. These values are the same as th

used in Ref.@7#, where the trial mass function is also th
same as ours.

The above equation has three types of solutions in ac
dance with the values of the temperatureT and the chemical
potential m: ~1! s50; ~2! s50,s1 (0,s1); ~3! s
50,s0 ,s1 (0,s0,s1). In the case~1!, s50 is always a
minimum and the thermodynamical potentialV is monotoni-
cally increasing withs. In the case~2!, s50 is a maximum
and s1 a minimum so thatV is decreasing (s,s1) and
increasing (s.s1). In the last case,s50 and s1 are
minima ands0 is a maximum:V is increasing (s,s0 and
s.s1) and decreasing (s0,s,s1). Moreover the case~3!
4-3
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is discriminated between the case ofV(0).V(s1) (32)
and that ofV(0),V(s1) @(31)#.

Now we consider the behavior of the thermodynami
potential when the temperature increases~the chemical po-
tential is fixed!. The numerical result shows three pattern
~a! (2)→(1) or (32)→(1) (m,mP); ~b! (32)→(31)
→(1) (mP,m,m0); ~c! (31)→(1) or (1) (m0,m). In the
pattern~a!, the order parameters changes froms1 to 0 at
T5Tc continuously so that the transition is of the seco
order. On the other hand in~b!, s changes froms1 to 0 at
T5Tc discontinuously. This abrupt jump occurs under t
condition V(Tc ,m,s1)5V(Tc ,m,0). This equation deter
mines the critical temperatureTc and this transition is of the
first order. The last pattern does not give any phase tra
tions and corresponds to the supercooling. ThemP in the
above equations is a critical point between such two tra
tions and the point (mP ,TP) is called a tricritical point.

Numerical results are shown in Fig. 1, which is a pha
diagram for the quark matter@22,23#. The closed circles
mean the second-order phase transition and the open one
first-order one. The point ‘‘P’’ stands for the tricritical point.
We have a second-order phase transition atTc5200 MeV
with m50 and a first-order phase transition atmc
5400 MeV withT50. The position of the tricritical pointP
is at (TP ,mP)5~105 MeV, 300 MeV!. These numerical re
sults are consistent with those by the previous authors.

V. LATENT HEAT

In this section, we will calculate the latent heat genera
across the first-order phase transition. For this purpose
need to know the entropy densityS and the particle numbe
densityr first. We note the following relation:

dV52SdT2rdm. ~25!

Accordingly, we can calculateS and r from the thermody-
namical potential as follows:

FIG. 1. The schematic view of the phase diagram on theT-m
plane based on our numerical results. The pointP denotes the tri-
critical one.
01401
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]V

]T
, r52

]V

]m
. ~26!

Let us now introduce the difference between the thermo
namical potential in the symmetry broken phase and tha
the symmetry one,

DV~Tc ,m![V~Tc ,m,s1!2V~Tc ,m,0!. ~27!

Similarly, we define the difference between the entropy d
sity in the broken phase and that in the symmetry o
DS(Tc ,m)5S(Tc ,m,s1)2S(Tc ,m,0).

We can calculateDS(Tc ,m) from the partial derivative of
DV with respect to the temperatureT,

DS~Tc ,m!52S ]DV

]T D
m

~Tc ,m!. ~28!

Now the latent heat can be derived from this entropy diff
ence as follows:

Ql52TcDS~Tc ,m!. ~29!

For example, we have drawnDV(T,m) as a function of
the temperature withm50.35 GeV in Fig. 2. Then we can
evaluate the latent heat from the slope of the curve at
critical pointDV(Tc ,m)50. The result of the latent heat pe
particle thus obtained is shown in Fig. 3 as a function of
chemical potentialm. It tells us that the latent heat is no
given off in the second-order phase transition (m,mP
50.30 GeV). The latent heat emerges abruptly with la
value (;250 MeV) near the tricritical point (mP
50.30 GeV). When the chemical potential is increased
decreases and vanishes atm50.40 GeV. In order to realize
this behavior, let us consider the following relation:

Ql5Tc

]DV~Tc ,m!

]Tc
, ~30!

FIG. 2. Temperature dependence ofDV at m5350 MeV. This
is a case of the first-order phase transition. The curve pa
through the horizontal line at the critical pointTc and the slope of
the tangential line gives the latent heat by Eq.~30!.
4-4
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LATENT HEAT IN THE CHIRAL PHASE TRANSITION PHYSICAL REVIEW D68, 014014 ~2003!
which is derived from Eqs.~28! and ~29!. When m is in-
creased in the region of the first-order transition, the figure
DV(T) becomes shallow as a function ofT ~see Fig. 2!: This
means that the derivative]DV(Tc)/]Tc decreases with in-
creasingm. Therefore the latent heat decreases with incre
ing m. Our numerical result shows that the latent heat ha
singularity near the tricritical point and plays an importa
role to identify the tricritical point.

VI. SUMMARY AND DISCUSSIONS

We have studied the latent heat in the chiral phase tra
tion in this paper. We have taken the QCD-like gauge fi

FIG. 3. The latent heatQl as a function of the chemical potentia
m.
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theory as an effective theory and have performed the num
cal calculations using the mean field~WKB! approximation.
We have calculated the latent heat generated in the first-o
phase transition. The latent heat is enhanced near the tric
cal point and decreases as the chemical potential increa
However, it should be pointed out that more accurate
merical simulations will be necessary for the detailed beh
ior of the latent heat near the tricritical point.

We must now note the existence of the color superc
ducting state which has been disregarded in our numer
calculations @24–26#. The color superconducting state
considered to be able to exist in the region at low tempe
ture and high density apart from the tricritical point. Henc
we cannot apply our results directly on the actual physi
phenomenon, in which color superconductivity is involve
However, the phase transition on the color superconducti
is of the second-order so that it does not give off the lat
heat originated on this transition@27,28#.

It is pointed out that the values ofT andm realized in high
energy heavy-ion collisions may be close to the tricritic
point @11–13#. Therefore, it may be possible to observe so
signals originated in the generation of the latent heat beca
of the fact that the latent heat becomes large near the tric
cal point.
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